• 제목/요약/키워드: battery power

검색결과 2,710건 처리시간 0.031초

5kW 배터리 충전기용 양방향 3상 인터리브드 DC-DC 컨버터 설계 및 실험 (Design and Experiment of Three-phase Interleaved DC-DC Converter for 5kW Lead-Acid Battery Charger)

  • 이우종;엄주경;한병문;차한주
    • 전력전자학회논문지
    • /
    • 제16권3호
    • /
    • pp.227-233
    • /
    • 2011
  • 본 논문은 5kW 배터리 충전기용 3상 인터리브드 DC-DC 컨버터 설계 및 실험에 대하여 서술하였으며, 배터리 시스템은 풍력 시스템의 안정화를 위해 사용한다. 배터리 충전기는 배터리, 3상 인터리브드 양방향 DC-DC 컨버터, 직류단, 계통연계형 인버터로 구성된다. 납축전지는 matlab으로 간단한 R-C모델링 하였으며, 스텝 전류 방전 실험에 따라 배터리 파라미터를 구하였다. 3상 인터리브드 DC-DC 컨버터를 이용해 배터리의 전류 리플을 감소시켰으며, 5kW 배터리 충전기를 제작하여 충·방전모드 제어기를 설계하고 실험하였다.

전자가격표시시스템의 소모전력 분석 및 최소화 방안 (Power Consumption Analysis and Minimization of Electronic Shelf Label System)

  • 우리나라;김정준;서대화
    • 대한임베디드공학회논문지
    • /
    • 제9권2호
    • /
    • pp.75-80
    • /
    • 2014
  • Energy consumption of sensor nodes is minimized because it has limited energy generator in wireless sensor network. Electronic shelf label system is one of application fields using wireless sensor networks. Battery size of small apparatus for displaying price is restricted. Therefore its current consumption have to be minimized. Furthermore the method for minimization of peak current would be considered because life cycle of coin battery used to display or RF is vulnerable to intensity of drain current. In this paper, we analyze current consumption pattern of low-power electronic shelf label system. Then we propose the method for minimization of current consumption by modification of software and hardware. Current consumption of the system using proposed method are approximately 15 to 20 percent lower than existing system and the life cycle of the system is approximately 10 percent higher than existing system.

Traction Motor-Inverter Utilized Battery Charger for PHEVs

  • Woo, Dong-Gyun;Kim, Yun-Sung;Kang, Gu-Bae;Lee, Byoung-Kuk
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.528-535
    • /
    • 2013
  • Most eco-friendly cars can adopt the concept of an integrated battery charger (IBC), which uses currently available motor drive systems. The IBC has a lot of strong points such as low cost and minimum space for the high voltage battery charger. On the other hand, it also has some defects caused by its structure. In this paper, the shortcomings of the conventional IBC for PHEVs with interior permanent magnet motors are discussed, and two advanced IBCs with improved performance are presented. Compared with the conventional IBC, the two advanced IBCs have plenty of strengths such as low common noise, high efficiency, simple sensing methods, etc. Then, the digital control algorithm is modified and a power loss calculation is carried out with simulation software. Finally, experimental results are provided to show the performance of the IBC systems.

Optimization of Battery Storage Capacity with Min-Max Power Dispatching Method for Wind Farms

  • Nguyen, Cong-Long;Kim, Hyung-Jun;Lee, Tay-Seek;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.238-239
    • /
    • 2013
  • It is a crucial requirement to utilize an economical battery capacity for the wind energy conversion system. In this paper, the optimal BESS capacity is determined for the wind farm whose dispatched power is assigned by the min-max dispatching method. Based on a lifetime cost function that indicates the BESS cost spent to dispatch 1kWh wind energy into grid, the battery capacity can be optimized so as to obtain the minimum system operation cost. Moreover, the battery state of charge (SOC) is also managed to be in a safe operating range to ensure the system undamaged. In order to clarify the proposed optimizing method, a 3MW permanent magnet synchronous generator (PMSG) wind turbine model and real wind speed data measured each minute are investigated.

  • PDF

연료전지-배터리 기반 무인항공기 추진시스템 동특성 분석을 위한 모델 개발 (Model Development for Analysis of the System Dynamic Characteristics for Fuel Cell-battery Based Unmanned Aerial Vehicles)

  • 현대일;홍석무;한재영
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.490-496
    • /
    • 2023
  • Unmanned aerial vehicles (UAVs) research is recently actively underway. Especially, fuel cell battery hybrid systems are widely used to overcome the limitations of continuous operation. However, fuel cell systems must be operated in combination with a battery due to their low specific output characteristics. Therefore, a hybrid power system model for UAVs is developed. The rule-based strategy is applied to the model to properly distribute power to batteries and fuel cells. As a result, the designed rule-based power distribution control operates UAVs while maintaining battery state of charge(SOC) at an appropriate level.

A Simple Power Management Scheme with Enhanced Stability for a Solar PV/Wind/Fuel Cell Fed Standalone Hybrid Power Supply using Embedded and Neural Network Controller

  • Thangavel, S.;Saravanan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1454-1470
    • /
    • 2014
  • This paper propose a new power conditioner topology with intelligent power management controller that integrates multiple renewable energy sources such as solar energy, wind energy and fuel cell energy with battery backup to make best use of their operating characteristics and obtain better reliability than that could be obtained by single renewable energy based power supply. The proposed embedded controller is programmed for maintaining a constant voltage at PCC, maximum power point tracking for solar PV panel and WTG and power flow control by regulating the reference currents of the controller on instantaneous basis based on the power delivered by the sources and load demand. Instantaneous variation in reference currents of the controller enhances the controller response as it accommodates the effect of continuously varying solar insolation and wind speed in the power management. The power conditioner uses a battery bank with embedded controller based online SOC estimation and battery charging system to suitably sink or source the input power based on the load demand. The simulation results of the proposed power management system for a standalone solar/WTG/fuel cell fed hybrid power supply with real time solar radiation and wind velocity data collected from solar centre, KEC for a sporadically varying load demand is presented in this paper and the results are encouraging in reliability and stability perspective.

배터리 시뮬레이터를 위한 동적 배터리 모델링 (Dynamic battery modeling for battery simulator)

  • 배경철;최성촌;김지환;정용채;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.465-466
    • /
    • 2013
  • In this paper, we propose a dynamic battery equivalent modeling of lithium-ion batteries that can be applied to the battery simulator. In order to apply battery model to battery simulator, the profile of battery model should be equal to that of actual battery. Therefore, the equivalent model was selected by considering the transient and steady-state characteristics of lithium-ion batteries. Also, to obtain transient-state behavior of the battery, the RC values of the battery are selected through the lithium-ion battery charge/discharge experiments. The validity of proposed battery model is verified from the experimental results.

  • PDF

MATLAB/Simulink를 이용한 오프그리드형 고효율 태양광 충전 시스템 설계 (Design of an Off Grid type High efficiency Solar charging system Using MATLAB/Simulink)

  • 미흐렛 가아브레슬라세 마루;김민;변기식;김관형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.735-737
    • /
    • 2017
  • An Off grid or remote solar electric systems are an energy supply to our home or to our companies without the utility of Grid at all. Off grid solar systems are very important for those who live in remote locations especially for developing countries where getting the electric grid is extremely expensive, inconvenient or for those who doesn't need to pay a monthly bill with the electric bill in general. The main critical components of any solar power system or renewable energy harvesting systems are the energy storage systems and its charge controller system. Energy storage systems are the essential integral part of a solar energy harvesting system and in general for all renewable energy harvesting systems. To provide an optimal solution of both high power density and high energy density at the same time we have to use hybrid energy storage systems (HESS), that combine two or more energy storage technologies with complementary characteristics. In this present work, design and simulation we use two storage systems supercapacitor for high power density and lithium based battery for high energy density. Here the system incorporates fast-response supercapacitors to provide power to manage solar smoothing and uses a battery for load shifting. On this paper discuss that the total energy throughout of the battery is much reduced and the typical thermal stresses caused by high discharge rate responses are mitigated by integrating supercapacitors with the battery storage system. In addition of the above discussion the off grid solar electric energy harvesting presented in this research paper includes battery and supercapacitor management system, MPPT (maximum power point tracking) system and back/boost convertors. On this present work the entire model of off grid electric energy harvesting system and all other functional blocks of that system is implemented in MATLAB Simulink.

  • PDF

Energy Balance and Power Performance Analysis for Satellite in Low Earth Orbit

  • Jang, Sung-Soo;Kim, Sung-Hoon;Lee, Sang-Ryool;Choi, Jae-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권3호
    • /
    • pp.253-262
    • /
    • 2010
  • The electrical power system (EPS) of Korean satellites in low-earth-orbit is designed to achieve energy balance based on a one-orbit mission scenario. This means that the battery has to be fully charged at the end of a one-orbit mission. To provide the maximum solar array (SA) power generation, the peak power tracking (PPT) method has been developed for a spacecraft power system. The PPT is operated by a software algorithm, which tracks the peak power of the SA and ensures the battery is fully charged in one orbit. The EPS should be designed to avoid the stress of electronics in order to handle the main bus power from the SA power. This paper summarizes the results of energy balance to achieve optimal power sizing and the actual trend analysis of EPS performance in orbit. It describes the results of required power for the satellite operation in the worst power conditions at the end-of-life, the methods and input data used in the energy balance, and the case study of energy balance analyses for the normal operation in orbit. Both 10:35 AM and 10:50 AM crossing times are considered, so the power performance in each case is analyzed with the satellite roll maneuver according to the payload operation concept. In addition, the data transmission to the Korea Ground Station during eclipse is investigated at the local-time-ascending-node of 11:00 AM to assess the greatest battery depth-of-discharge in normal operation.

통신위성 전이궤도 전력운용 분석 (Energy Balance Analysis of Communication Satellite at Transfer Orbit)

  • 최재동;성세진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.189-192
    • /
    • 2003
  • Electrical power in satellite system should persistently satisfy specified power requirement even though that happen the failure of solar array string or battery cell during the mission operation. In this study, the solar array and battery of GEO Communication Satellite with 3kW capacity are designed, and energy balance analysis according to power operation mode are performed to meet specified power capacity at the transfer orbit

  • PDF