• 제목/요약/키워드: battery charge rate

검색결과 186건 처리시간 0.02초

Preparation of LiFe PO4 Using Chitosan and its Cathodic Properties for Rechargeable Li-ion Batteries

  • Hong, Kyong-Soo;Yu, Seong-Mi;Ha, Myoung-Gyu;Ahn, Chang-Won;Hong, Tae-Eun;Jin, Jong-Sung;Kim, Hyun-Gyu;Jeong, Euh-Duck;Kim, Yang-Soo;Kim, Hae-Jin;Doh, Chil-Hoon;Yang, Ho-Soon;Jung, Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1719-1723
    • /
    • 2009
  • The LiFeP$O_4$ powder was synthesized by using the solid state reaction method with Fe($C_2O_4){\cdot}2H_2O,\;(NH_4)_2HPO_4,\;Li_2CO_3$, and chitosan as a carbon precursor material for a cathode of a lithium-ion battery. The chitosan added LiFePO4 powder was calcined at 350 ${^{\circ}C}$ for 5 hours and then 800 ${^{\circ}C}$ for 12 hours for the calcination. Then we calcined again at 800 ${^{\circ}C}$ for 12 hours. We characterized the synthesized compounds via the crystallinity, the valence states of iron ions, and their shapes using TGA, XRD, SEM, TEM, and XPS. We found that the synthesized powders were carbon-coated using TEM images and the iron ion is substituted from 3+ to 2+ through XPS measurements. We observed voltage characteristics and initial charge-discharge characteristics according to the C rate in LiFeP$O_4$ batteries. The obtained initial specific capacity of the chitosan added LiFeP$O_4$ powder is 110 mAh/g, which is much larger than that of LiFeP$O_4$ only powder.

리튬이온전지용 층상 Li1.05Ni0.9Co0.05Ti0.05O2에 대한 소성 온도의 영향 (The Effect of Calcination Temperature on the Layered Li1.05Ni0.9Co0.05Ti0.05O2 for Lithium-ion Battery)

  • 고형신;박현우;이종대
    • Korean Chemical Engineering Research
    • /
    • 제56권5호
    • /
    • pp.718-724
    • /
    • 2018
  • 본 연구에서는 농도구배형 공침합성법을 통해 $Ni_{0.9}Co_{0.05}Ti_{0.05}(OH)_2$ 전구체를 제조하였다. 높은 니켈함량의 양극 활물질에서 나타나는 산소 탈리에 따른 구조변화문제를 극복하기 위하여 소성온도 변화에 따른 양극 활물질의 물리적, 전기화학적 분석방법을 사용하여 조사하였다. $Li_{1.05}Ni_{0.9}Co_{0.05}Ti_{0.05}O_2$의 물리적 특성은 FE-SEM, XRD, TGA를 이용하여 분석하였다. 양극 활물질과 $LiPF_6$(EC:EMC=1:2 vol%) 전해질을 사용하여 제조한 코인셀의 전기화학적 성능은 초기 충 방전 효율, 사이클 유지율 및 율속 테스트를 통해 분석하였다. 제조된 양극재의 초기 충전 용량 및 초기효율은 소성온도 $750{\sim}760^{\circ}C$에서 244.5~247.9 mAh/g, 84.2~85.8%로 우수하였다. 또한 용량 보존율은 50사이클 후에 97.8~99.1%의 높은 안정성을 나타내었다.

붕소가 도핑된 리튬이온전지용 양극 활물질(LiNi0.90Co0.05Ti0.05O2)의 전기화학적 특성 (Electrochemical Properties of Boron-doped Cathode Materials (LiNi0.90Co0.05Ti0.05O2) for Lithium-ion Batteries)

  • 김근중;박현우;이종대
    • Korean Chemical Engineering Research
    • /
    • 제57권6호
    • /
    • pp.832-840
    • /
    • 2019
  • 양극 활물질의 전기화학적 성능을 개선하기 위하여, 농도 구배형 전구체를 사용한 boron-doped $LiNi_{0.90}Co_{0.05}Ti_{0.05}O_2$를 합성하였다. 제조된 양극 활물질의 특성은 XRD, SEM, EDS, PSA, ICP-OES 및 전기전도도 측정을 통하여 분석하였다. 초기 충 방전 용량, 사이클, 순환전압전류, 율속 특성 및 임피던스 테스트를 통해 전기화학적 성능을 조사하였다. 붕소가 0.5 mol% 도핑된 $LiNi_{0.90}Co_{0.05}Ti_{0.05}O_2$ 양극 활물질은 2.7~4.3 V (vs. $Li/Li^+$)의 전압 범위에서 0.5 C의 전류를 인가했을 때, 187 mAh/g의 용량을 보이며 50 사이클 이후 94.7%의 용량 유지율을 보였다. 상대적으로 고전압인 2.7~4.5 V (vs. $Li/Li^+$)의 전압 범위에서는 200 mAh/g의 높은 용량을 보이며 50 사이클 이후 80.5%의 용량 유지율을 나타냈다.

피치로 코팅된 Nano Silicon Sheets/Graphite 음극복합소재의 전기화학적 특성 (Electrochemical Performance of Pitch coated Nano Silicon Sheets / Graphite Composite as Anode Material)

  • 이태헌;이종대
    • Korean Chemical Engineering Research
    • /
    • 제59권4호
    • /
    • pp.487-492
    • /
    • 2021
  • 본 연구에서는 피치가 코팅된 실리콘 시트/흑연 음극복합소재의 전기화학적 특성을 조사하였다. NaCl을 주형으로 하여 스토버 법 및 마그네슘 열 환원법을 통해 실리콘 시트를 제조하고, 양친성 물질인 SDBS로 흑연과 결합시켜 실리콘 시트/흑연을 합성하였다. THF를 용매로 석유계 피치가 코팅된 실리콘 시트/흑연 음극복합소재를 제조하였고, 음극복합소재의 물리적 특성은 XRD, SEM, EDS와 TGA를 통해 분석하였다. 전기화학적 특성은 LiPF6 (EC:DMC:EMC=1:1:1 vol%)의 전해액을 사용해 전지를 제조하여, 충·방전 사이클, 율속, 순환전압전류, 전기화학적 임피던스 테스트를 통해 조사하였다. 실리콘 조성이 증가함에 따라 방전 용량이 증가하였고, 장기 안정성은 감소하는 경향을 보였다. 30 wt% 실리콘 조성을 갖는 실리콘 시트/흑연 복합소재에 피치를 코팅한 음극복합소재는 1228.8 mAh/g의 높은 초기 방전 용량을 보였으며, 50사이클 이후 용량 유지율은 77%로 실리콘 시트/흑연 복합소재에 비해 안정성이 개선됨을 알 수 있었다.

실리콘과 CNT를 사용한 리튬 이온 전지용 고용량 음극복합소재의 전기화학적 특성 (Electrochemical Characteristics of High Capacity Anode Composites Using Silicon and CNT for Lithium Ion Batteries)

  • 이태헌;이종대
    • Korean Chemical Engineering Research
    • /
    • 제60권3호
    • /
    • pp.446-451
    • /
    • 2022
  • 본 연구에서는 용량 및 장기 안정성을 개선하기 위하여 나노 실리콘 시트와 CNT를 정전기적 결합을 통해 피치가 코팅된 나노 실리콘 시트/CNT 복합체를 합성하였다. NaCl의 결정면에 스토버 법을 통해 제조된 나노 실리카 시트를 마그네슘 열 환원법을 사용하여 나노 실리콘 시트로 환원하였다. 산 처리를 통해 음으로 도전된 CNT와 APTES 표면처리를 통한 양으로 도전된 나노 실리콘 시트를 결합하여 나노 실리콘 시트/CNT 복합소재를 합성하였으며, 석유계 피치를 코팅하기 위하여 THF를 용매로 사용하였다. 제조된 음극복합소재의 물리적 특성은 FE-SEM, XRD, EDS를 통하여 분석하였고, LiPF6 (EC:DMC:EMC = 1:1:1 vol%)를 전해액으로 사용하여 전지를 제조하였으며, 전기화학적 특성을 충·방전 사이클, 율속, differential capacity, EIS 테스트를 통해 조사하였다. 높은 조성의 실리콘과 전도성이 좋은 CNT를 사용할 경우 고용량 및 안정성이 우수한 음극소재를 제조할 수 있음을 알 수 있었다. 피치가 코팅된 나노 실리콘 시트/CNT 음극복합소재는 초기 방전 용량이 2344.9 mAh/g을 보였으며, 50 사이클 이후 용량 유지율이 81%로 피치가 코팅되지 않은 복합소재에 비해 개선된 전기화학적 성능을 확인할 수 있었다.

Barium 도핑에 따른 Li[Ni0.6-xBaxCo0.1Mn0.3]O2(x=0, 0.01) 의 구조 분석 및 전기화학적 특성 (The Structural and Electrochemical Properties of Li[Ni0.6-xBaxCo0.1Mn0.3]O2 (x = 0, 0.01) by Barium Doping)

  • 장병찬;유기원;양수빈;민송기;손종태
    • 전기화학회지
    • /
    • 제17권4호
    • /
    • pp.222-228
    • /
    • 2014
  • 리튬 이차전지 양극소재인 Ni-rich계의 $Li[Ni_{1-x-y}Co_xMn_y]O_2$는 높은 방전용량을 갖고 있지만 Ni의 함량이 많아짐으로써, 구조적 안정성과 전기화학적 특성이 떨어지는 문제점이 있다. 이러한 문제점을 해결하기 위해 양이온 도핑에 대한 연구가 시행되고 있다. 본 연구는, 공침법을 이용하여 제조한 $Ni_{0.6}Co_{0.1}Mn_{0.3}(OH)_2$ 전구체를 사용하여 바륨(Ba)이 도핑된 $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01)를 합성하였고, 바륨(Ba)의 도핑에 따른 구조적 안정성 및 전기화학적 특성을 연구하였다. 구조적 특성분석을 위한 X선-회절분석 결과, 바륨(Ba) 도핑시 $I_{(006)}+I_{(102)}/I_{(101)}$(R-factor)비가 감소하는 것을 통해 층상구조의 안정성이 증가한 것을 확인하였고, 전기 화학적 특성이 개선될 것으로 예측하였다. 전기화학적 분석 결과, 바륨(Ba)을 도핑한 전극의 경우 과전압의 감소로 $Li[Ni_{0.6}Co_{0.1}Mn_{0.3}]O_2$ 전극보다 $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01)전극의 방전용량이 $23mAhg^{-1}$ 증가하였고, 구조적 안정성의 증가로 싸이클 특성의 개선과, 전극과 전해액 간의 전하이동 저항의 감소로 인하여 고율특성 특성이 개선된 것을 확인 하였다.