• Title/Summary/Keyword: batch tests

Search Result 261, Processing Time 0.028 seconds

Degradation of the Herbicide Butachlor by Laboratory-synthesized Nanoscale $Fe^0$ in Batch Experiments

  • Kim, Hyang-Yeon;Kim, In-Kyung;Han, Tae-Ho;Shim, Jae-Han;Kim, In-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.101-105
    • /
    • 2006
  • Degradation of the herbicide butachlor was investigated using laboratory-synthesized zerovalent iron ($Fe^0$). The synthesized zerovalent iron was determined to be nanoscale powder by scanning electron microscopic analysis. To investigate degradation of butachlor using the synthesized nanoscale zerovalent iron, time-course batch experiments were conducted by treating the solution of butachlor formulation with the iron. More than 90% degradation of butachlor was observed by iron treatment within 24 h. The synthesized nanoscale zerovalent iron showed an increase in particle aggregation in the batch tests. Green rust formation and a pH drop in solutions were observed, suggesting that the oxidation of the iron occurred. When the iron was extracted with dichloromethane, a negligible concentration was found in the extract, suggesting that butachlor did not bind to the iron particles. GC/MS analysis detected the dechlorinated product as a major degradation product of butachlor in the solutions. The data indicate that laboratory-synthesized zerovalent iron functioned as a reductant to remove electron-withdrawing chlorine, giving the dechlorinated product.

Design and Implementation of Monitoring Solution for Improving Productivity (생산성 향상을 위한 모니터링 솔루션 설계 및 구현)

  • Lim, Jae-Hyun;Kong, Heon-Tag
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1458-1464
    • /
    • 2007
  • Today, domestic and foreign manufacturing industries have to cope with obsolescence of manufacturing equipment because the shifting market trends drive the rapid changes in the production process resulting in stressful operation. Quality control process for manufacturing and production involves a familiar step - when the production process is completed, every item is subjected to various routine tests to determine that it meets the minimum quality standards. Typically, when a faulty product is found, the production line has to be stopped and the current batch is marked for further inspected and exhaustive testing. In this research, we propose a quality monitoring system for productivity enhancement. Our approach aims to reduces the operational down time in the production line of a car-component factory. The proposed monitoring system for productivity enhancement is designed to collect the data through testing at each phase of the assembly line and uses predictive methods on the collected data to achieve early detection of faults in the production process and minimize the number of products in a faulty batch thus minimizing the losses incurred from defective products. More importantly, this system aims to forecast and proactively detect faults and activate warnings when they are detected thus minimizing items in the defective batch, reducing the damage to manufacturing equipment and ultimately reducing the operational downtime or the delay in the resumption of normal factory operation.

  • PDF

The Analysis of COVID-19 Pooled-Testing Systems with False Negatives Using a Queueing Model (대기행렬을 이용한 위음성률이 있는 코로나 취합검사 시스템의 분석)

  • Kim, Kilhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.154-168
    • /
    • 2021
  • COVID-19 has been spreading all around the world, and threatening global health. In this situation, identifying and isolating infected individuals rapidly has been one of the most important measures to contain the epidemic. However, the standard diagnosis procedure with RT-PCR (Reverse Transcriptase Polymerase Chain Reaction) is costly and time-consuming. For this reason, pooled testing for COVID-19 has been proposed from the early stage of the COVID-19 pandemic to reduce the cost and time of identifying the COVID-19 infection. For pooled testing, how many samples are tested in group is the most significant factor to the performance of the test system. When the arrivals of test requirements and the test time are stochastic, batch-service queueing models have been utilized for the analysis of pooled-testing systems. However, most of them do not consider the false-negative test results of pooled testing in their performance analysis. For the COVID-19 RT-PCR test, there is a small but certain possibility of false-negative test results, and the group-test size affects not only the time and cost of pooled testing, but also the false-negative rate of pooled testing, which is a significant concern to public health authorities. In this study, we analyze the performance of COVID-19 pooled-testing systems with false-negative test results. To do this, we first formulate the COVID-19 pooled-testing systems with false negatives as a batch-service queuing model, and then obtain the performance measures such as the expected number of test requirements in the system, the expected number of RP-PCR tests for a test sample, the false-negative group-test rate, and the total cost per unit time, using the queueing analysis. We also present a numerical example to demonstrate the applicability of our analysis, and draw a couple of implications for COVID-19 pooled testing.

Effect of the Presence of Soil on the Ferrous Catalyzed Sodium Persulfate Oxidation of Naphthalene (과황산나트륨과 제일철 촉매를 이용한 나프탈렌 산화 시 토양이 미치는 영향 평가)

  • Han, Dai-Sung;Yun, Yeo-Bog;Ko, Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • Batch tests were carried out to examine the influence of the presence of soil and Fe(II) sorption capacity of soil on the ferrous catalyzed sodium persulfate oxidation for the destruction of organic pollutants in the application of in-situ chemical oxidation. Laboratory column tests were also conducted to investigate the transport of oxidant and catalyst in contaminated groundwater. Test results proved that Fe(II) was adsorbed on soil surface, and thus soil behaved as a heterogeneous catalyst, enhancing the naphthalene removal rate up to 50%. Column tests that were conducted with and without dissolved Fe(II) showed that naphthalene removal ratio were 24% and 25%, respectively. The removal efficiency was not enhanced with dissolved Fe(II), since the dissolved Fe(II) flew out of the column as the oxidant progressively injected into the column saturated with Fe(II). It indicates that the injected oxidant could not interact with dissolved Fe(II). But target organic pollutant was degraded in soil column system, implying that sulfate radical was produced by the reaction of dissolved persulfate with Fe(II) adsorbed on soil.

Autotrophic Nitrite Denitrification Using Sulfur Particles for Treatment of Wastewaters with Low C/N Ratios (Batch Tests) (C/N비가 낮은 하.폐수에서 황입자를 이용한 아질산성질소 탈질 연구(회분식 실험))

  • Yoon, Seung-Joon;Kang, Woo-Chang;Bae, Woo-Keun;Oh, Sang-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.851-856
    • /
    • 2010
  • A sulfur utilizing nitrite denitrification process could be placed after the shortcut biological nitrogen removal (SBNR) process. In this study, removal of nitrite using sulfur oxidizing denitrifier was characterized in batch tests with granular elemental sulfur as an electron donor and nitrite as an electro acceptor. At sufficient alkalinity, initial nitrite nitrogen concentration of 100 mg/L was almost completely reduced in the batch reactor within a incubation time of 22 h. Sulfate production with nitrite was 4.8 g ${SO_4}^{2-}/g$ ${NO_2}^-$-N, while with nitrate 13.5 g ${SO_4}^{2-}/g$ ${NO_3}^-$-N. Under the conditions of low alkalinity, nitrite removal was over 95% but 15 h of a lag phase was shown. For nitrate with low alkalinity, no denitrification occurred. Sulfate production was 2.6 g ${SO_4}^{2-}/g$ ${NO_2}^-$-N and alkalinity consumption was 1.2 g $CaCO_3/g$ ${NO_2}^-$. The concentration range of organics used in this experiment did not inhibit autotrophic denitrification at both low and high alkalinity. This kind of method may solve the problems of autotrophic nitrate denitrification, i.e. high sulfate production and alkalinity deficiency, to some extent.

Evaluation of Static and Dynamic Characteristics of Coal Ashes (석탄회의 정적 및 동적 특성 평가)

  • Yoon, Yeowon;Chae, Kwangsuk;Song, Kyuhwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.5-12
    • /
    • 2009
  • This study presents static and dynamic strength of coal ashes collected from disposal site of power plant. Main compositions of coal ashes were bottom ashes. In order to evaluate static and dynamic characteristics of coal ash, NGI direct-simple shear tests, cyclic simple shear tests and direct shear tests were conducted. The strengths of coal ashes from those tests were compared to those of sands. Bottom ashes among coal ashes used for this study were classified as sand from the grain size distribution and show higher strength properties than the sands. For utilization of coal ashes in civil engineering project, mixing coal ashes with sandy soil using batch plant is inconvenient and the cost is higher than the spreading sand layer and coal layer alternately. In order to simulate both mixing type and layered type construction, sands and coal ashes were mixed with volume ratio 50:50 and prepared sand and coal ash layers alternately with the same volume ratio. From the tests mixed coal ashes-specimen shows slightly higher static and cyclic strength than the layered specimen at the same density. The higher strength seems due to the angular grain of bottom ashes. The cyclic stress ratio at liquefaction decreases rapidly as the number of cycle increases at mixed specimen than that of layered specimen.

  • PDF

Determination of Ultimate Biodegradability and Multiple Decay Rate Coefficients in Anaerobic Batch Degradation of Organic Wastes (유기성폐기물의 회분식 혐기성 최종생분해도와 다중분해속도 해석)

  • Kang, Ho;Shin, Kyung-Suk;Richards, Brian
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.555-561
    • /
    • 2005
  • A new graphical method was developed to separate two distinctive decay rate coefficients($k_1$ and $k_2$) at their respective degradable substrate fractions($S_1 and $S_2$). The mesophilic batch reactor showed $k_1$ of $0.151\;day^{-1}$ for wasted activated sludge(WAS), $0.123\;day^{-1}$ for thickened sludge(T-S), $0.248{\sim}0.358\;day^{-1}$ at S/I ratio of $1{\sim}3$ for sorghum and $0.155{\sim}0.209\;day^{-1}$ at S/I ratio $0.2{\sim}1.0$ for swine waste, whereas their long term batch decay rate coefficients($k_2$) were $0.021\;day^{-1}$, $0.001\;day^{-1}$, $0.03\;day^{-1}$ and $0.04\;day^{-1}$ respectively. At least an order of magnitude difference between $k_1$ and $k_2$ was routinely observed in the batch tests. The portion of $S_1$, which degrades with each $k_1$ appeared 71% for WAS, 39% for T-S, 90% for sorghum, and $84{\sim}91%$ at S/I ratio of $0.2{\sim}1.0$ for swine waste. Ultimate biodegradabilities of 50% for WAS, 40% of T-S, $82{\sim}92%$ for sorghum, and $81{\sim}89%$ for swine waste were observed.

ASSESSMENT OF SUBSTRATE REMOVAL CHARACTERISTICS ACCORDING TO ACCLIMATION PERIODS BY OUR AND NUR TESTS

  • Jung, Jung-Eun;Lee, Sung-Hak;Im, Jeong-Hoon;Poo, Kyoung-Min;Kim, Jong-Rock;Kim, Chang-Won
    • Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.156-163
    • /
    • 2006
  • In this study, substrate removal characteristics were analyzed to reduce the cost of external carbon dosage at Sudokwon Landfill Site Management Corporation in Korea by utilizing oxygen uptake rate (OUR) and nitrate uptake rate (NUR) tests. To estimate and evaluate the substrate removal characteristics obtained by the batch tests, the lab-scale MLE process was operated. By-products of J Co. (sugar manufactory) and S Co. (fine chemical industry) were selected as the concerned carbon sources through a comparison of carbon and nitrogen contents. MeOH was tested as a control experiment. Until the steady state, the fraction of $RBDCOD_{OUR}$ concentration to COD concentration of J Co., S Co. by-products and MeOH increased and reached levels of 98%, 82%, and 100%, respectively. During the 20th operating day, the fraction of $RBDCOD_{NUR}$ concentration to COD concentration was 95%, 81%, and 83%, respectively. These fractions of $RBDCOD_{NUR}$ concentration to $RBDCOD_{OUR}$ concentration increased according to acclimation periods and reached levels of 99%, 97%, and 81%, respectively, on the 20th day. The results obtained from the lab-scale MLE process operation using the concerned carbon sources as external carbon were similar to that observed by OUR and NUR tests.

Leaching Characteristics of Foundry Sands When Used as Reactive Media in Permeable Reactive Barriers (반응벽체에 쓰인 주물사의 용출특성에 관한 연구)

  • ;Benson, Craig H
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.179-193
    • /
    • 2002
  • Waste foundry sands were tested to determine their leaching characteristics when used as reactive media in permeable reactive barriers (PRBs). Water leach tests and column leach tests were performed on twelve foundry sands and three reference materials such as Peerless iron, a local fill material, and torpedo sand. The latter three materials were tested to compare concentrations of heavy metals and anions found in other materials commonly placed below the groundwater table with those from the foundry sands. Results of water leach tests md total elemental analyses showed that all of the laundry sands are Category 2 materials per Section NR 538 of the Wisconsin Administrator Code. However, tests on Peerless iron, torpedo sand, and a typical fill material indicate that these materials, which are commonly placed below the groundwater table, also are Category 2 materials. Thus, using foundry sand as a PR3 medium should pose no greater risk than that imposed using conventional construction materials.

The Assessment of Water Quality Contamination Following the Utilization of Coal Ash as Fill Material (성토재로서 석탄회 사용에 따른 수질오염도 평가)

  • 김학삼;조삼덕
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.5-16
    • /
    • 1995
  • In this paper, two leaching tests(batch test & column test) were carried out to estimate the detrimental effects of coal ash leachates. The variation of constituents and concentration of coal ash leachate with the lapse of leachins time was analysed through the column tests. From the test results, it was found coal tach can be classified as a general waste, and all other items except pH of coal ash leachate are satisfied the concentration requirements for the drinking water. It was also found the concentration of coal ash rapidly decrease with the lapse of the leaching time and become the insignificant value after an elapsed time.

  • PDF