• 제목/요약/키워드: batch denitrification

검색결과 110건 처리시간 0.027초

액상 당밀과 질산성 질소의 C/N 비율에 따른 Pseudomonas sp. KY1의 탈질 능력 및 그 최적비율에 관한 연구 (Enhancement of Denitrification Capacity of Pseudomonas sp. KY1 through the Optimization of C/N ratio of Liquid Molasses and Nitrate)

  • 이규연;이병선;신도연;최용주;남경필
    • 대한환경공학회지
    • /
    • 제35권9호
    • /
    • pp.654-659
    • /
    • 2013
  • 본 연구에서는 액상당밀을 외부탄소원으로 이용하는 탈질미생물 Pseudomonas sp. KY1의 탈질능력을 확인하고 최적의 C/N 비율을 도출하였다. 회분식 실험 결과, C/N 비율 3/1에서 $0.0263hr^{-1}$의 유사1차반응상수가 도출되었고, 이 비율에서 100 mg-N/L의 초기 질산성질소는 실험시작 후 약 100시간 이내에 약 80%의 제거율을 보였다. C/N 비율 3/1의 컬럼 실험에서 초기 질산성질소 농도 100 mg-N/L의 오염수(유속 0.3 mL/min)는 실험시작 후 172시간(35 PV) 이후부터 실험 종료 시(62 PV)까지 최대 95%의 탈질효율을 보였고, 이 비율에서 2차 오염원으로 작용할 수 있는 잔류당밀의 농도를 최소화(125~180 mg-COD/L) 할 수 있었다.

회분식 발효조에서 미생물을 이용한 라군 슬러지 질산염 폐액의 탈질 공정 평가 (Bio-Denitrification of the Nitrate Waste Solution from the Lagoon Sludge in a Batch Fermenter)

  • 오종혁;이오미;황두성;최윤동;황성태;조병렬;박진호
    • 방사성폐기물학회지
    • /
    • 제4권2호
    • /
    • pp.153-159
    • /
    • 2006
  • 우라늄 변환시설 가동 중 발생하여 라군(lagoon)에 저장중인 방사성 슬러지 폐기물에 대한 처리는 시설 해체과정에서 매우 중요한 업무 중 하나이다. 슬러지 구성성분 중 다량을 차지하는 질산암모늄의 폭발 위험성 등으로 인해 미생물을 이용한 질산염의 분해는 질산염을 안정적으로 처리할 수 있는 효과적인 방법이라 할 수 있다. 본 연구에서는 라군 슬러지의 약 60 wt%를 차지하는 질산염을 혐기성 균주의 하나인 Pseudomonas halodenidificans를 이용하여 탈질하기위한 공정 변수에 대한 영향을 평가하였다. 온도, 질산염 농도, 전자공여체의 영향, C/N 비율, 초기 접종하는 균주의 비율, pH등의 공정변수에 대하여 실험한 이번 결과는 향후 연속식 공정 설계를 위한 기초 자료로 사용될 것이다.

  • PDF

유입방식 변화에 따른 황 탈질조의 탈질효율 평가 (Evaluation of Denitrification Efficiency by Sulfur Denitrification Process according to Injection Type)

  • 유태경;최용범;권재혁
    • 한국산학기술학회논문지
    • /
    • 제17권12호
    • /
    • pp.262-269
    • /
    • 2016
  • 황 탈질조 유입수질은 회분식 실험을 통한 질산화된 유출수를 사용하였으며, 유입수 주입방향에 따라 상향류와 하향류식으로 운전하여 주입방식에 따른 탈질효율 성능을 평가하였다. 또한, 탈질효율 평가에 따라 선정된 주입방식의 최적 운전조건을 산출하기 위해 EBCT(Empty bed contact time) 변화와 유입 질소농도를 증가시켜 유입부하 증가에 따른 질소 제거효율을 평가하였다. 유입방식 변화에 따른 황 탈질조의 탈질효율 평가결과, 상향류 방식이 탈리된 미생물과 유출 고형물의 재침전으로 인하여 하향류 방식보다 유출 유기물 농도가 낮은 것으로 조사되었다. 또한, 상향류 방식에서 T-N 제거 효율은 73.3~90.2%로 하향류 방식보다 약 10.0% 이상 높은 것으로 조사되어 질소제거 측면에서도 상향류 방식이 유리한 것으로 판단된다. EBCT 변화에 따른 질소제거 효율 검토결과, 1hr에서는 47.4%, 3hr에서는 88.1%, 5hr에서는 90.5%로 조사되어, 황 탈질 공정의 최적 EBCT는 3hr로 판단된다. 법 규정과 부하율에 따른 총질소 제거효율을 검토한 결과, T-N 법적 방류수질 20mg/L를 을 안정적으로 유지하기 위해서는 황 탈질조의 유입 T-N 부하율은 $0.443kgT-N/m^3{\cdot}day$ 이하로 유지하여야 한다.

연속회분식 반응기(Sequencing Batch Reactor)에서 유기물, 질소 및 인의 거동에 관한 연구 (Study on Behavior of Organic, Nitrogen, and Phosphorus in the Sequencing Batch Reactor)

  • 한기백;박동근
    • 한국환경과학회지
    • /
    • 제6권5호
    • /
    • pp.521-529
    • /
    • 1997
  • In the study, we Investigated the behavior and removal efficiency of organics, nitrogen. phosphorus with operating conditions in SBRs. Substrate used was synthetic wastewater in which the ratio of $COD_{cr}$. : N : P was 100 : 12 : 2. The cycling the in SBRs was adjusted at 6 hours and 8 hours, and then certainly Included anaerobic and aerobic conditions. Also, for each cycling time. we performed 2 series of experiment simultaneously which was set up 10 days and 20 days as SRT. The removal efficiency of $COD_{cr}$. was over 97% in all operating conditions. In the 6 hours cycling time, the removal efficiency of $PO_4^{3-}-P$ reached almost 100% in steady state. And then we could observe a typical phonemena of phosphorus release and uptake, and the removal efficiency of N was 67%, Residual N source was almost TKN and most of the rest remained as $NO_2-N$. Also the difference in both SRTs was not observed practically. In the 8 hours cycling time, dissolution of sludge appeared. and, $PO_4^{3-}-P was not nearly removed but nitrogen was removed up to 75%, And the residual nitrogen was accumulated as $NO_2^--N$.

  • PDF

배치 실험을 이용한 암모니아 제거 기작 및 효율 평가 (Evaluation of Ammonia Removal Mechanisms and Efficiencies Through Batch Experiments)

  • 장지은;강지영;김혜원;신규진;진성욱
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권6호
    • /
    • pp.37-46
    • /
    • 2022
  • As the amount of livestock wastewater increases, ammonia contamination in surface water and groundwater is also increasing, and its treatment is urgently needed. In this study, indigenous soil bacteria was utilized for ammonia removal in artificial wastewater and associated removal mechanisms and efficiencies were evaluated. Two batch reactors were configurated to contain natural soil and artificial wastewater at 1:10 mass ratio, and incubated for 84 and 168 hours, respectively. The results showed that ammonia was completely removed within 48 and 72 hours in the first and second reactors, respectively. There were no significant changes in ammonia concentrations in the control groups without soil. Nitrate was formed in the reactors, indicating that the main removal mechanism of ammonia was nitrification by nitrifying bacteria. Nitrate was further converted to nitrogen gas by denitrification in the anaerobic environment, which was caused by consumption of oxygen during the nitrification process.

반류수탈암모니아 공정 (Sidestream Deammonification)

  • 박영현;김정미;최원영;유재철;이태호
    • 한국물환경학회지
    • /
    • 제34권1호
    • /
    • pp.109-120
    • /
    • 2018
  • Sidestream in domestic wastewater treatment plants contains high concentration of ammonium, which increases nitrogen loading rate in the mainstream. The process for deammonification consisting of partial nitritation-anaerobic ammonium oxidation (ANAMMOX) and heterotrophic denitrification is an economical method of solving this problem. Currently, about 130 full-scale deammonification plants are fully operating around the world, but none is in Korea. In order to transfer the principal information about sidestream deammonification processes to researchers and operators, we summarized basic concepts, processes type, and key influence factors (e.g., concentration of nitrogen compounds, dissolved oxygen (DO), temperature, and pH). This review emphasis on the processes of single-stage sequencing batch reactor (SBR) deammonification, which are widely used as full-scale plants. Since simultaneous processes of partial nitritation, ANAMMOX and heterotrophic denitrification occur in a single reactor, the single-stage SBR deammonification requires appropriate control/monitoring strategies for several operating factors (DO and pH mostly) to achieve efficient and stable operation. In future, AB-process consisting of A-stage (energy harvesting from organics) and B-stage (ammonium removal without organics) will be applied to the wastewater treatment process. Thus, we suggest mainstream deammonification for B-stage connected with the sidestream deammonification as seeding source of ANAMMOX. We expect that many researchers will become more interested in the sidestream deammonification.

SBR공정에서 전자수용체에 따른 호기성 입상활성슬러지의 공정별 특성 (Characteristics of Aerobic Granular Activated Sludge According to Electron Acceptors in Sequencing Batch Reactor Process)

  • 김이태;이희자;배우근
    • 한국물환경학회지
    • /
    • 제20권5호
    • /
    • pp.480-487
    • /
    • 2004
  • This study was conducted to find the effect of electron acceptors on the formation of granular sludge by using four different types of electron acceptors. The phosphorous uptake, denitrification, and sulfate reduction in anoxic modes were simultaneously occured because of the presence of the polyphosphate accumultating organism(PAO) that utilize nitrate and sulfate as an electron acceptor in the anoxic zone. Denitrirying phosphorous removal bacteria(DPB) was enriched under anaerobic/anoxic/aerobic condition with a nitrate as an electron acceptor, and desulfating phosphorous removal bacteria(DSPB) was enriched under anaerobic/anoxic/aerobic condition with a sulfate as an electron acceptor. Polyphosphate accumulating organism(PAO) were enriched in the anaerobic/aerobic SBR. PAO took up acetate faster than DPB and DSPB during the aerobic phase. The sludge with nitrate and sulfate as an electron acceptors grew as a granules which possessed high activity and good settleability. In the anaerobic/aerobic modes, typical floccular growth was observed. In the result of bench-scale experiment, simultaneous reactions of phosphorus uptake, denitrification and sulfate reduction were observed under anoxic condition with nitrate and sulfate as an electron acceptors. These results demonstrated that the anaerobic/anoxic modes with nitrate and sulfate as an electron acceptors played an important role in the formation of the sludge granulation.

연속회분식반응조를 이용한 슬러지 소화에서 고형물과 질소의 제거 (Solids and Nitrogen Removal in the Sludge Digestion using a Sequencing Batch Reactor)

  • 김성홍;이윤희
    • 대한토목학회논문집
    • /
    • 제26권6B호
    • /
    • pp.669-675
    • /
    • 2006
  • SBR반응조를 이용하여 간헐폭기의 슬러지소화 실험을 실시하였다. 폭기비율은 고형물과 질소 제거의 가장 중요한 운전인자 중의 하나였다. 슬러지의 소화에 따라 용출된 유기성질소는 질산성질소로 산화되었고, 생물학적 질소제거율도 높게 나타났는데, 질소제거율은 폭기비율에 따라 달라졌다. 폭기비율 0.25-0.75의 범위에서, 암모니아성 질소의 축적은 보이지 않았으며, pH는 중성에서 유지되었다. 폭기비율을 증가시킴에 따라 고형물 제거율은 증가하지만 용존 질소의 제거율은 감소하는 경향을 보였다. 본 실험에서 SBR 반응조를 이용하고, 평균고형물체류시간 8-32일 정도의 설계조건과 폭기비율 0.25-0.75의 운전 조건에서 VSS 제거율은 17-42% 정도, 용존질소 제거율은 80% 이상이 가능하였다.

Process Development for Effective Denitrification by Biofilter Using Loess Ball

  • CHOI DU BOK;LEE DONG BYUNG;CHA WOL SUK
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.412-420
    • /
    • 2005
  • In order to investigate factors affecting the denitrification in the F-STEP PROCESS using a loess ball as support media and Pseudomonas DWC 17-8, calcining temperature, loess ball size, pH, nitrate concentration, working temperature, and inhibitor were studied in batch mode using synthetic sludge. A 5- 10 mm of loess ball (960$^{circ}$ of calcining temperature) was the most suitable for denitrification. When the initial pH was increased from 3.0 to 7.0, the removal efficiency of nitrate was increased. Specifically, at initial pH of 7.0, the maximum removal efficiency of nitrate was 5.0 mg/min. When the initial concentration of nitrate was increased from 100 to 400 mg/l, the removal efficiency of nitrate was proportional to the concentration of nitrate. The maximum removal efficiency of nitrate was 5.72 mg/min at 400 mg/l of initial concentration. When the operating temperature was increased from 10 to 30$^{circ}$, the removal efficiency of nitrate was increased from 0.76 to 6.15 mg/min, and at above 40$^{circ}$ of operating temperature, it was decreased from 4.0 to 2.0 mg/min. Among the various inhibitors, higher than 10$^{-1}$ M of sodium azide abolished this reaction completely. When the KCN concentration was above 10$^{-1}$ M, the reaction was inhibited completely. In the case of 2,4-dinitrophenol and sodium sulphide, it was inhibited at above 10$^{-2}$ M completely. For testing the various flow orders of the F-STEP PROCESS for effective denitrification using practical wastewater, continuous experiments under the optimum conditions were carried out for 60 days. Among the various processes, the PROCESS A gave the highest efficiencies of denitrification, nitrification, and total nitrogen (TN) removal with 86.5, 89.5, and $90\%$, respectively. For scale-up in the PROCESS A, real farm wastewater was used and pilot tests carried out for 90 days. The denitrification efficiency was $97.5\%$, which was increased by $12.7\%$. The efficiencies of TN removal and nitrification were 96.6 and $70.0\%$, respectively. The removal efficiency of chemical oxygen demand (COD) was $63.7\%$, which was increased by $20\%$.

Nitrate Removal in a Packed Bed Reactor Using Volatile Fatty Acids from Anaerobic Acidogenesis of Food Wastes

  • Lim, Seong-Jin;Ahn, Yeong-Hee;Kim, Eun-Young;Chang, Ho-Nam
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권6호
    • /
    • pp.538-543
    • /
    • 2006
  • A packed bed reactor (PBR) was fed with nitrate containing synthetic wastewater or effluent from a sequencing batch reactor used for nitrification. The C source introduced into the PBR consisted of volatile fatty acids (VFAs) produced from anaerobic acidogenesis of food wastes. When nitrate loading rates ranged from $0.50\;to\;1.01\;kg\;N/m^{3}{\cdot}d$, the PBR exhibited $100{\sim}98.8%\;NO_{3}^{-}-N$ removal efficiencies and nitrite concentrations in the effluent ranged from $0\;to\;0.6\;NO_{2}^{-}-N\;mg/L$. When the PBR was further investigated to determine nitrate removal activity along the bed height using a nitrate loading rate less than $1.01\;kg\;N/m^{3}{\cdot}d$, 100% nitrate removal efficiency was observed. Approximately 83.2% nitrate removal efficiency was observed in the lower 50% of the packed-bed height. When reactor performance at a C/N ratio of 4 and a C/N ratio of 5 was compared, the PBR showed better removal efficiency (96.5%) of nitrate and less nitrite concentration in the effluent at the C/N ratio of 5. VFAs were found to be a good alternative to methanol as a carbon source for denitrification of a municipal wastewater containing 40 mg-N/L.