• 제목/요약/키워드: batch denitrification

검색결과 110건 처리시간 0.023초

내부탄소원을 이용한 돈사폐수의 탈질화 (Denitrification of Piggery Wastewater by Internal Carbon Source)

  • 임재명;한동준;우영국
    • 산업기술연구
    • /
    • 제16권
    • /
    • pp.13-24
    • /
    • 1996
  • This research aims to investigate the effects of an internal carbon source in the denitrification of piggery wastewater. In this study, the raw wastewater and the effluent from each of anoxic basin and anaerobic basin were used as the internal carbon sources. The experiments were carried out in batch system and the results are as follows ; i) Denitrification rates were the highest in the raw wastewater and the lowest in the anaerobic effluent. ii) The piggery wastewater contained about 60 percent of the readily biodegradable organic(RDCOD), which led to a conclusion that the raw wastewater could be used as the internal carbon source for the denitrification. For the efficient denitrification, pre-denitrification process was found profitable. iii) In denitrification, alkalinity production rates were in the range of 3.4 to $3.6mgCaCO_3/mgNO_3-N$. iv) The denitritation of piggery wastewater came out to be possible, and the rate of organic carbon consumption decreased about 10 percent.

  • PDF

바이오필름 반응기상에서 수소 이용성 독립영양생물을 이용한 고농도 탈질 반응 (Autohydrogenotrophic Denitrification of High Nitrate Concentration in a Glass Bead Biofilm Reactor)

  • 박호일;김지성;김동건;박대원
    • 한국물환경학회지
    • /
    • 제20권3호
    • /
    • pp.236-240
    • /
    • 2004
  • Autohydrogenotrophic denitrification of high nitrate concentration contaminated wastewater in a batch-scale biofilm reactor has been investigated. High nitrate concentration decreased as pH increased from 7.01 to 9.45. The high nitrate concentrations continuously decrease from $150mg.l^{-1}$ to $0mg.l^{-1}$. Nitrite concentrations increase at about two-thirds way through the denitrification process and thereafter it decreases with time. Autohydrogenotrophic denitrification of high nitrate concentration is passible to use drinking water as well as wastewater, and to deal with wastewater treatment by hetrotrophic denitrification.

고농도 질산성 질소를 함유한 산세폐수의 생물학적 처리에 관한 연구 (A Study on the Biological Treatment of Acid Pickling Wastewater Containing a High Concentration of Nitrate Nitrogen)

  • 박상진;이상혁
    • 한국물환경학회지
    • /
    • 제31권3호
    • /
    • pp.253-261
    • /
    • 2015
  • The purpose of this study is the efficient biological treatment of highly concentrated nitrate nitrogen by calcium ion control present within the pickling wastewater. In laboratory scale's experiments research was performed using a sequencing batch reactor and the evaluation of denitrification reaction in accordance with the injection condition of calcium ions, the surface properties of microorganisms, and the evaluation of sludge precipitability were performed. Results of the study showed that the denitrification reaction was delayed when injecting more than 600 mg/L of the calcium ion within the denitrification process. In addition, we observed the absorption form of calcium ions absorbed on the surface of microorganisms following an increase in the calcium ion dose. It was found that as the calcium ion dose increased the sludge precipitability also increased continuously and it is judged that a smooth denitrification induction is possible when treating the nitrate nitrogen by the calcium ion control of pickling waste water and the shortening of precipitation time enables a liquid operation to increase the reaction time.

호기성 그래뉼 슬러지를 이용한 고농도 염분 함유 폐수의 생물학적 탈질 반응에 관한 연구 (Study on the Biological Denitrification Reaction of High-Salinity Wastewater using an Aerobic Granular Sludge (AGS))

  • 김현구;안대희
    • 한국환경과학회지
    • /
    • 제28권7호
    • /
    • pp.607-615
    • /
    • 2019
  • The purpose of this study is to biological treatment of high salinity wastewater using Aerobic Granular Sludge (AGS). In laboratory scale's experiments research was performed using a sequencing batch reactor, and evaluation of the denitrification reaction in accordance with the injection condition of salinity concentration, surface properties of microorganisms, and sludge precipitability was performed. The results showed that the salinity concentration increased up to 1.5%, and there was no significant difference in the nitrogen removal efficiency; however, it showed a tendency to decrease gradually from 2.0% onward. The specific denitrification rate (SDNR) was 0.052 - 0.134 mg $NO_3{^-}-N/mg$ MLVSS (mixed liquor volatile suspended solid)${\cdot}day$. The MLVSS/MLSS (mixed liquor suspended solid) ratio decreased to 76.2%, and sludge volume index ($SVI_{30}$) was finally lowered to 57 mL/g. Using an optical microscope, it was also observed that the initial size of the sludge was 0.2 mm, and finally it was formed to 0.8-1.0 mm. Therefore, salinity injection provides favorable conditions for the formation of an AGS, and it was possible to maintain stable granular sludge during long-term operation of the biological treatment system.

매립지 침출수 현장 처리를 위한 폴리우레탄과 개질토의 특성 분석 실험에 관한 연구 (Characterization of Polyurethane and Soil Layers for In-situ Treatment of Landfill Leachate)

  • 박찬수;정영욱;박중섭;백원석;신원식;천병식;한우선;박재우
    • 한국물환경학회지
    • /
    • 제23권2호
    • /
    • pp.281-286
    • /
    • 2007
  • A chemical and biological permeable barrier with economic feasibility is suggested to treat landfill leachate in this study. The proposed composite layers consist of bentonite, and polyurethane (PU) foam that is mixed with powdered activated carbon (PAC) and inoculated with microorganisms from local wastewater treatment plant. Each layer is mixed with local sand, and yellow brown soil. Batch tests were conducted to investigate the sorptions of nitrate on the PU foam and PAC, and nitrification/denitrification rate of each layer material. Nitrification occurred in 30 minutes with initial ammonia concentration of 100 mg/L, and the concentration of nitrate attached in the PU foam increased after 270 minutes. Results of denitrification batch tests showed 76.6%, 87.3% and 88% of nitrate removal efficiency at 10%, 20% and 30% of the volume ratio of PU foam, respectively. The pH increased from 7 to 9.42, and alkalinity increased from 980 mg/L to 1720 mg/L during the denitrification batch tests. In the column experiments using the proposed composite layers with 20% of the volume ratio of the PU foam, about 96% of BOD, 63% of COD, 58.1~79.5% of total nitrogen were removed.

Membrane Diffuser Coupled Bioreactor for Methanotrophic Denitrification under Non-aerated Condition: Suggestion as a Post-denitrification Option

  • Lee, Kwanhyoung;Choi, Oh Kyung;Song, Ji Hyun;Lee, Jae Woo
    • Environmental Engineering Research
    • /
    • 제19권1호
    • /
    • pp.75-81
    • /
    • 2014
  • Methanotrophic denitrification under a non-aerated condition (without external supply of oxygen or air) was investigated in a bioreactor coupled with a membrane diffuser. Batch experiment demonstrated that both methane consumption and nitrogen production rates were not high in the absence of oxygen, but most of the nitrate was reduced into $N_2$ with 88% recovery efficiency. The methane utilized for nitrate reduction was determined at 1.63 mmol $CH_4$/mmol $NO_3{^-}$-N, which was 2.6 times higher than the theoretical value. In spite of no oxygen supply, methanotrophic denitrification was well performed in the bioreactor, due to enhanced mass transfer of the methane by the membrane diffuser and utilization of oxygen remaining in the influent. The denitrification efficiency and specific denitrification rate were 47% and 1.69 mg $NO_3{^-}-N/g\;VSS{\cdot}hr$, respectively, which were slightly lower than for methanotrophic denitrification under an aerobic condition. The average concentration of total organic carbon in the effluent was as low as 2.45 mg/L, which indicates that it can be applicable as a post-denitrification method for the reclamation of secondary wastewater effluent. The dominant fatty acid methyl ester of mixed culture in the bioreactor was $C_{16:1{\omega}7c}$ and $C_{18:1{\omega}7c}$, which was predominantly found in type I and II methanotrophs, respectively. This study presents the potential of methanotrophic denitrification without externally excess oxygen supply as a post-denitrification option for various water treatment or reclamation.

PHOSPHORUS RELEASE AND UPTAKE ACCORDING TO NITRATE LOADING IN ANOXIC REACTOR OF BNR PROCESS

  • Kim, Kwang-Soo
    • Environmental Engineering Research
    • /
    • 제10권5호
    • /
    • pp.257-263
    • /
    • 2005
  • A batch and a continuous type experiments were conducted to test the conditions for simultaneous phosphorus release and uptake, and denitrification, taking place in one process. The bacteria able to denitrify as well as to remove phosphorus were evaluated for the application to biological nutrient removal(BNR) process. In the batch-type experiment, simultaneous reactions of phosphorus release and uptake, and also denitrification were observed under anoxic condition with high organic and nitrate loading. However the rate and the degree of P release were lower than that occurred under anaerobic condition. BNR processes composed of anaerobic-anoxic-oxic(AXO), anoxic-anaerobic-oxic(XAO) and anoxic-oxic(XO) were operated in continuous condition. The anoxic reactors in each process received nitrate loading. In the AXO process, P release in anaerobic reactor and the luxury uptake in oxic reactor proceeded actively regardless to nitrate loading. However in XAO and XO processes, P release and luxury uptake occurred only with the nitrate loading less than $0.07\;kg{NO_3}^--N$/kgMLSS-d. With higher nitrate load, P release increased and the luxury uptake decreased. Therefore, it appeared that the application of denitrifying phosphorus-removing bacteria (DPB) to BNR process must first resolve the problem with decrease of luxury uptake of phosphorus in oxic reactor.

C/N비가 낮은 하.폐수에서 황입자를 이용한 아질산성질소 탈질 연구(회분식 실험) (Autotrophic Nitrite Denitrification Using Sulfur Particles for Treatment of Wastewaters with Low C/N Ratios (Batch Tests))

  • 윤승준;강우창;배우근;오상은
    • 대한환경공학회지
    • /
    • 제32권9호
    • /
    • pp.851-856
    • /
    • 2010
  • 본 연구는 단축질소제거(SBNR) 공정의 후속 공정 목적으로 황이용 독립영양탈질을 이용하여 유출수 내 아질산성질소를 제거하고자 황 이용 아질산성질소의 제거특성을 파악하였다. 이를 위하여 알칼리도가 이론적인 양보다 충분한 조건과 부족한 조건에서 아질산성질소와 질산성질소의 황탈질 회분식 실험을 수행하면서 메탄올의 영향을 파악하였다. 충분한 알칼리도와 완전독립영양 조건에서 초기 아질산성질소, 질산성질소 농도가 각각 100 mg N/L에서 배양 27시간 이내에 99% 이상의 질소가 제거 되었다. 탈질 속도는 질산성질소 탈질에 비해 아질산성질소 탈질이 약 1.3배 빨랐다. 아질산성질소 탈질 시 1 g 당 황산염 이온 생성량은 약 4.8 g ${SO_4}^{2-}/g$ ${NO_2}^-$-N 이었고, 질산성질소 탈질의 경우 13.5 g ${SO_4}^{2-}/g$ ${NO_3}^-$-N이었다. 알칼리도가 충분하지 않은 조건에서 아질산성질소는 95% 이상 높은 효율을 보였으나 15시간 정도의 긴 유도기가 관찰되었고, 질산성질소 탈질의 경우 배양기간 동안 전혀 탈질이 이루어지지 않았다. 아질산성질소 탈질에서 제거된 아질산성질소 1 g 당 황산염 이온 생성량은 약 2.6 g이었고 알칼리도 소비량은 1.2 g $CaCO_3$이었다. 모든 알칼리도 조건에서 투여한 메탄올의 아질산성질소 제거 영향은 없었다. 본 연구결과를 바탕으로 황이용탈질의 특성을 파악하여 하수 및 폐수의 특성에 맞게 반응조 운전이 이루어지면 기존 탈질 방법의 단점을 보완한 효율적인 탈질 방법이 될 것으로 판단된다.

활성 탈질미생물 Bio-bead의 특성

  • 박경주;조경숙;이민규;이병헌;김중균
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.378-381
    • /
    • 2003
  • 질소, 인 등의 영양소 제거를 위한 고정화 미생물을 이용한 새로운 BNR 시스템 개발을 위해 탈질능력이 뛰어난 균주를 순수분리하고 여러 담체를 사용하여 제조된 활성 bio-bead의 특성을 알아보았다. 4종류의 탈질 능력이 뛰어난 균주를 순수분리 하였고, 12% PVA 담체로 만든 bead가 가장 좋은 탈질능력을 보였다. Cell loading 농도는 200 mg/ml일 때 bead의 활성이 최적을 나타내었으며, bead의 size에 의한 탈질효율에는 유의적 차이가 없었다. 제조된 bead는 약 4 batch실험 후 최대 탈질율을 나타내었으며, 약 25번의 batch실험까지는 탈질능력을 그대로 유지하고 cell leaking 양도 약 $10^3$ CFU/ml 정도 였으나, 그 이후로는 bead 형태도 변하면서 cell leaking이 증가하고 탈질능력도 감소되었다.

  • PDF