• Title/Summary/Keyword: basin shape

Search Result 175, Processing Time 0.027 seconds

Acoustic Characteristics of Gas-related Structures in the Upper Sedimentary Layer of the Ulleung Basin, East Sea (동해 울릉분지 퇴적층 상부에 존재하는 가스관련 퇴적구조의 음향 특성연구)

  • Park, Hyun-Tak;Yoo, Dong-Geun;Han, Hyuk-Soo;Lee, Jeong-Min;Park, Soo-Chul
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.513-523
    • /
    • 2012
  • The upper sedimentary layer of the Ulleung Basin in the East Sea shows stacked mass-flow deposits such as slide/slump deposits in the upper slope, debris-flow deposits in the middle and lower slope, and turbidites in the basin plain. Shallow gases or gas hydrates are also reported in many area of the Ulleung Basin, which are very important in terms of marine resources, environmental changes, and geohazard. This paper aims at studying acoustic characteristics and distribution pattern of gas-related structures such as acoustic column, enhanced reflector, dome structure, pockmark, and gas seepage in the upper sedimentary layer, by analysing high-resolution chirp profiles. Acoustic column shows a transparent pillar shape in the sedimentary layer and mainly occurs in the basin plain. Enhanced reflector is characterized by an increased amplitude and laterally extended to several tens up kilometers. Dome structure is characterized by an upward convex feature at the seabed, and mainly occurs in the lower slope. The pockmark shows a small crater-like feature and usually occurs in the middle and lower slope. Gas seepage is commonly found in the middle slope of the southern Ulleung Basin. These gas-related structures seem to be mainly caused by gas migration and escape in the sedimentary layer. The distribution pattern of the gas-related structures indicates that formation of these structures in the Ulleung Basin is controlled not only by sedimentary facies in upper sedimentary layer but also by gas-solubility changes depending on water depth. Especially, it is interpreted that the chaotic and discontinuous sedimentary structures of debris-flow deposits cause the facilitation of gas migration, whereas the continuous sedimentary layers of turbidites restrict the vertical migration of gases.

Block Tectonics of The Taebaegsan Basin and En Echelon Sedimentary Wedges of The Yeonhwa-Ulchin District, Mideastern South Korea

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.11 no.4
    • /
    • pp.127-141
    • /
    • 1978
  • The major structures characteristic of the Taebaegsan sedimentary basin were regionally analyzed with special reference to its southeastern extension to the Yeonhwa-Ulchin district of economic interest in zinc-lead mineralization. The basin geometry, basement setting, sedimentary components, and the characteristics of deformation and igneous activity of the Taebaegsan basin differ basically from those of the adjacent mobile belt of the Ogcheon geosyncline, although the latter affected the basin's western side considerably. The subrectangular shape of the Taebaegsan basin reflects the checkered pattern of basement-block arrangement, and the carbonate-dominated lithologic components of the basin-fill indicate a cratonic depositional setting, which is comparable to some of the North American mid-continental craton. The Taebaegsan basin, however, has somewhat been less stable than the North American megacraton that is reflected in the former's thicker sedimentary fill and steeper faults of later deformation, showing a tendency to increase in thickness close to the basement-block boundaries, which may indicate contacts of possibly detached cratonic blocks of Precambrian age; these weak zones of block boundaries have been the loci of repeated sedimentation, deformation and related igneous intrusions. A series of downthrown or uplifted tilted blocks, in which the Cambro-Ordovician sedimentary wedges and the late Cretaceous to early Tertiary igneous intrusives are involved, occurs intermittently across the Yeonhwa-Ulchin district in a noticeable pattern of en echelon type. These sedimentary wedges are correlated to the Cambro-Ordovician section of the Hambaeg syncline to the west in stratigraphy and lithology, and are considered to have resulted from the northeastern and/or northwestern cross-faulting of the pre-existing syncline belt of easterly trend, extended from the main portion of the Hambaeg syncline. These structural junctions (or intersections) of the earlier syncline belt and the later cross-faults have been acted as a guide to ascending igneous materials and hydrothermal ore-forming fluids to form a zone of zinc-lead skarn deposits across the Yeonhwa-Ulchin district showing a stepwise recurrence of these deposits toward the east.

  • PDF

Stand Structure and Dynamics in Forests around Nari Basin of Ulleung Island, Korea (울릉도 나리분지 주변 산림의 임분구조 및 동태)

  • Chung, Jae-Min;Hwang, Sun-Mi;Kim, Yoo-Mi;Shin, Jae-Kwon;Kim, Myong-Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.1
    • /
    • pp.23-35
    • /
    • 2010
  • For the sustainable conservation of forests within and around the somma of Nari basin in Ulleung Island, the stand structure and dynamics with the aspect, altitude and stand types were estimated by using analyses of importance value, plant species diversity, S$\o$rensen's similarity index and distributions of diameter classes. Results of the importance value analysis with vegetation stories on each stand showed that Fagus engleriana and Acer okamotoanum were dominant in most stands regardless of the aspect and altitude of the forest around the somma of Nari basin and the plant species composition among stands was not significantly different. The forest within Nari basin was composed of pine, beech, alder and deciduous-mixed stand. Moreover, the species composition was greatly different among the four stands. The diversity of plant species within stand was in general higher within Nari basin than around the somma, and among stands within Nari basin, the plant species diversity of pine and deciduous-mixed stand showed higher values than that of beech and alder stands. The similarity index among stands with aspect and altitude showed that the index among stands of eastern, western and northern slope in forest around the somma and forest within the basin ranged from 0.68 to 0.69, and the similarity among four stands with altitude was very high having index range from 0.85 to 0.95. The patterns of diameter class distribution of the major dominant species from four altitude classes followed an almost normal bell-shaped distribution. The results were interpreted as an indication that these forests will in general maintain a stable stand structure. Therefore, despite diverse topographic features around Nari basin, the stand structure and plant species composition among stands were not diversified as expected. For the conservation of diversity of forest plant species and of forest ecosystems, a promising and intensive program should be considered.

Experimental results on Shape Reconstruction of Underwater Object Using Imaging Sonar (영상 소나를 이용한 수중 물체 외형 복원에 관한 기초 실험)

  • Lee, Yeongjun;Kim, Taejin;Choi, Jinwoo;Choi, Hyun-Taek
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.116-122
    • /
    • 2016
  • This paper proposes a practical object shape reconstruction method using an underwater imaging sonar. In order to reconstruct the object shape, three methods are utilized. Firstly, the vertical field of view of imaging sonar is modified to narrow angle to reduce an uncertainty of estimated 3D position. The wide vertical field of view makes the incorrect estimation result about the 3D position of the underwater object. Secondly, simple noise filtering and range detection methods are designed to extract a distance from the sonar image. Lastly, a low pass filter is adopted to estimate a probability of voxel occupancy. To demonstrate the proposed methods, object shape reconstruction for three sample objects was performed in a basin and results are explained.

The Impact of Characteristic Velocities Considering Geomorphological Dispersion on Shape of Instantaneous Unit Hydrograph (지형학적 분산을 고려한 특성유속이 순간단위도 형상에 미치는 영향)

  • Choi, Yong-Joon;Kim, Joo-Cheol;Hwang, Man-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.399-408
    • /
    • 2010
  • The sensitivity of Nash model parameters is analyzed about characteristic velocities considering geomorphological dispersion in the present study. And changing shape of IUH compared and analyzed as variation of characteristic velocities through numerical experiment. Application watersheds are selected 4 subwatersheds which are located at main stream of Bocheong basin. The mean and variance of hillslope and stream path length are estimated in each watershed with GIS. And Nash model parameters are estimated with moments of path lengths and characteristic velocities. The changing trend about IUH which is derived Nash model parameters are compared as variation of characteristic velocities. The Major results of this study are summarized as follows. The Nash model parameters sensitively present changes about hillslope characteristic velocity. And the effect of the peak discharge and shape of recession in IUH dominate with hillslope's characteristic velocity, the effect of the peak time and shape of ascension in IUH dominate with channel's characteristic velocity.

The derivation of GIUH by means of the lag time of Nash model (Nash 모형의 지체시간을 이용한 GIUH 유도)

  • Kim, Joo-Cheol;Yoon, Yeo-Jin;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.801-810
    • /
    • 2005
  • The lag time is one of the most important factors for estimating a flood runoff from streams. It is well known to be under the influence of the morphometric properties of basins which could be expressed by catchment shape descriptors. In this paper, the notion of the geometric characteristics of an equivalent ellipse proposed by Moussa(2003) is applied for calculating the lag time of geomorphological instantaneous unit hydrograph(GIUH) at the basin outlet. The lag time is obtained from the observed data of rainfall and runoff by using the method of moments suggested by Nash(1957), and the procedure based on geomorphology is used for GIUH. The relationships between the basin morphometric properties and the hydrological response are discussed as applied to 3 catchments In Korea. Additionally, the shapes of equivalent ellipse are examined how then are transformed from upstream area to downstream one. As a result, the relationship between the hydrological response and descriptors is shown to be comparatively good, and the shape of ellipse is presented to approach a circle along the river downwards. These results may be expanded to the estimation of hydrological response of ungauged catchment.

A Study on Anisotropy of Magnetic Susceptibility of Clastic Sedimentary Rocks in the Gyeongsang Basin (경상분지 쇄설성 퇴적암의 대자율 이방성 연구)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Hwang, Woong-Ki;Kwon, Hyun-Wook;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.8
    • /
    • pp.5-14
    • /
    • 2018
  • The grain size of clastic sedimentary rocks classifies the rock types and also causes of anisotropy of the rock. The anisotropy is one of the most important factors that dominates the strength and weathering behavior of rocks. The anisotropy of clastic sedimentary and igneous rocks in the Gyeongsang Basin including Yeongju, Daegu, and Busan were analyzed by magnetic susceptibility expressed by the degree of anisotropy and shape parameter. As the results of the study, the sandstone deposited under lacustrine environment unaffected by the external force shows 1.03 degree of anisotropy. The degrees of anisotropy of the rocks affected by faults and fault rocks show 1.06 and 1.14, respectively. The magnetic susceptibility of rocks is to decrease with the distance from the fault. A fresh mudstone and shale formed by fines show a similar magnitude of the degree of anisotropy to fault rock and correspond to oblate shape parameter due to their sedimentary structure. Due to these reasons, we need attention in design, construction, and maintenance of a structure constructed in mudstone and shale.

Most suitable design method of post-chlorination process in portable water process by using CFD (전산유체를 활용한 정수공정에서 후염소 투입공정 최적설계 방안)

  • Cho, Youngman
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.331-337
    • /
    • 2013
  • Post-chlorination for disinfection in portable water process is final process. The design factors of post-chlorination are inflow pipe line from tank of filtrated water to cleanwell, injection point of chlorine, appropriate shape of baffle in cleanwell for disinfection efficient improvement. Until now, we did not have the design standard for post-chlorination. we evaluated most suitable design method of post-chlorination process in portable water process by using computational fluid dynamics in this research. We found the result that the pipe to connect the cleanwell should be one. If pipe line split into two or more, uniform distribution of the flow is difficult. Second, optimal injection point of chlorine is the middle of pipe line to connect the cleanwell. Therefore, it is not economical to install chlorine contact basin in cleanwell. Third, the shape of baffle should be designed in order to water flows in one direction. And we found that it is better to design the low number of flow turning.

An Analysis of the Runoff Variation due to Urbanization in Cho-kyung Stream Watershed (조경천 유역의 도시화에 따른 유출 변화 추이 분석)

  • Choi, Jung-Hwa;Lee, Jeong-Ju;Kwon, Hyun-Han
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.161-169
    • /
    • 2009
  • Rainfall-runoff procedures of urban area are more complicated than agricultural procedures. Extension and development of town leads to shift of the basin characteristics and it makes more difficult to use runoff models. In this study, the changes of hydrologic circumstances and the shape of hydrograph due to the urbanization in Cho-kyung river basin has been assessed which is the representative urban stream in Jeonju city. The urbanization can be classified as four typical year. The natural basin period(1924) that is before the urban development, the period of construction of Chonbuk National University campus (1963), the period of construction of residential area(1986), and urbanization process has been finally completed in 1995. The rainfall-runoff analysis has been carried out by Storm Water Management Model(SWMM) under condition of the basin characteristics and impervious area of each period. It was found that hydrologic characteristics such as river length, roughness coefficient, and coefficient of surface storage has been decreased. According to the land use change, the pervious area was decreased from 97.7% to 42%, while the impervious area was increased from 0.6% to 34%. The time of concentration was shorten from 90 minutes to 37 minutes. Along with decreasing the time of concentration, the peak discharge was increased from $4.37m^3/s$ to $111.13m^3/s$, and the runoff rate was also increased from 0.8% to 68%.

  • PDF

Zircon morphology of the Pre-Cretaceous basement rocks and Cretaceous Hayang Group sandstones in the northeastern part of Gyeongsang Basin and its implication to provenance of the sandstones (경상분지 북동부 선백악기 기반암류와 백악기 하양층군 사암의 저어콘 결정 형태학 및 사암의 기원암)

  • 이윤종;이용태;김상욱;신영식;김중욱;하야시마사오;고인석
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.40-50
    • /
    • 2000
  • This study is aimed at elucidating the source rocks of the Hayang strata in the northeastern part of the Gyeongsang Basin. Zircon morphology was analyzed for sandstones from the Iljig, Hupyeongdong, and Jeomgog formations of the Hayang Group and Precambrian gneisses and Jurassic granites. Generally, the composite zircon crystals extracted from the basement rocks and the Hayang Group sandstones show short prismatic to middle prismatic shapes. {110)={100) prism type is dominant and (101) pyramid is the average of the zircon morphology data. Zircon index@) and the shape trend characteristics clearly show that the zircon crystal forms of the Iljig and Hupyeongdong sandstones are dominantly similar to those of the biotite banded gneiss and granite gneiss of Precambrian age. Zircon morphology of the Jeomgog sandstones is dominantly similar to those of the Jurassic granites. Referring to the reported paleocurrent result, the source rocks of the Iljig and Hupyeongdong formations are mainly the Precambrian gneisses distributed in the southeastern and northeastern parts, respectively. And Jeomgog sandstones were mainly derived from Cheongsong granite at Cheongsong uplift region in the eastern part. At the time of completion of the Hupyeongdong sedimentation, the Precambrian basement rocks were severely eroded and formed low topography. During the Jeomgog period, the Jurassic granites which intruded the Precambrian basement began to crop out on the surface. The basin widely extended toward the east and the exposed Jurassic granite of Cheongsong uplift region actively supplied the sediments to the basin.

  • PDF