• Title/Summary/Keyword: basic slags

Search Result 10, Processing Time 0.022 seconds

Application of aqueous carbonated slags in the immobilization of heavy metals in field-contaminated soils

  • Choi, Jiyeon;Shin, Won Sik
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.356-365
    • /
    • 2020
  • The aqueous carbonation efficiencies of basic oxygen furnace (BOF) and ladle slags at various pressures, temperatures, and liquid-to-solid (L/S) ratios were investigated to determine optimum conditions. The maximum CO2 carbonated concentrations in slag (0.584 mmol/g for BOF slag and 1.038 mmol/g for ladle slag) was obtained at 10 bars, 40℃, and L/S = 5 mL/g-dry. The L/S ratio was the most critical parameter for carbonation. The effect of carbonated slag amendment on the immobilization of heavy metals in two field-contaminated soils was also investigated. The immobilization efficiencies evaluated by using the toxicity characteristic leaching procedure (TCLP) and the Standards, Measurements and Testing Programme (SM&T) were above 90% for both raw and carbonated slags for all soils. The TCLP-extractable heavy metals concentrations were below the criteria (5.0, 1.0 and 5.0 g/L for Pb, Cd, and Cr, respectively) after immobilizations with both slags except for Pb in soil B. The SM&T analysis showed the decrease in the exchangeable phase but the increase in residual phase after immobilization with raw and carbonated slags. The results of this study imply the promising potential of the carbonated slags on the immobilization of heavy metals in the field-contaminated soils.

About Chromium (VI) Extraction from Fertilizers and Soils

  • Sager Manfred
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.657-662
    • /
    • 2005
  • Extractions fro fertilizer and soil samples were performed to yield the operationally defined fractions 'soluble' chromate (extractable with $NH_4NO_3$), 'exchangeable' chromate (extractable with phosphate buffer pH 7.2), and these results were compared with the data obtained by extractions with ammonium sulfate, borate buffer pH 7.2, saturated borax pH 9.6, and polyphosphate (Graham's salt). In order to maintain the pH of extractant solution about constant, the concentration of extractant buffer had to be raised to at least 0.5 M. The results strongly depended on the kind of extractant, and the solid: liquid ratio. For most of the samples investigated, the extraction efficiency increased in the order borate-sulfate-nitrate-phosphate. Whereas the recovery of $K_2CrO_4\;and\;CaCrO_4$ added to the samples of basic slags prior to the extraction was about complete, the recovery of added $PbCrO_4$ was highly variable. In soil extracts, the color reaction was interfered from co-extracted humics, which react with the chromate in weak acid solution during the time period necessary for color reaction (1 hour). However, this problem can be overcome by standard addition and subtraction of the color of the extractant solution. In soil extract of about pH < 7, organic material reduced chromate during the extraction period also, and standard addition of soluble chromate is recommended to prove recovery and the stability of chromate in the samples. In admixtures of soils and basic slags, results for hexavalent chromium were lower than from the mere basic slags. This effect was more pronounced in phosphate than in nitrate extracts. As a proficiency test, samples low in organic carbon from contaminated sites in Hungary were tested. The results from $NH_4NO_3$ extracts satisfactorily matched the results of the Hungarian labs obtained from $CalCl_2$ extractants.

Enhancement of the Life of Refractories through the Operational Experience of Plasma Torch Melter (플라즈마토치 용융로 운전경험을 통한 내화물 수명 증진 방안)

  • Moon, Young Pyo;Choi, Jang Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.169-178
    • /
    • 2016
  • The properties of wastes for melting need to be considered to minimize the maintenance of refractory and to discharge the molten slags smoothly from a plasma torch melter. When the nonflammable wastes from nuclear facilities such as concrete debris, glass, sand, etc., are melted, they become acid slags with low basicity since the chemical composition has much more acid oxides than basic oxides. A molten slag does not have good characteristics of discharge and is mainly responsible for the refractory erosion due to its low liquidity. In case of a stationary plasma torch melter with a slant tapping port on the wall, a fixed amount of molten slags remains inside of tapping hole as well as the melter inside after tapping out. Nonmetallic slags keep the temperature higher than melting point of metal because metallic slags located on the bottom of melter by specific gravity difference are simultaneously melted when dual mode plasma torch operates in transferred mode. In order to minimize the refractory erosion, the compatible refractories are selected considering the temperature inside the melter and the melting behavior of slags whether to contact or noncontact with molten slags. An acidic refractory shall not be installed in adjacent to a basic refractory for the resistibility against corrosion.

A Study on the Properties of Converter Slag Modified by Addition of Waste Foundry Sand (폐주물사를 첨가한 전로슬랙의 개질특성에 관한 연구)

  • 김영환;김종학;고인용
    • Resources Recycling
    • /
    • v.8 no.1
    • /
    • pp.44-51
    • /
    • 1999
  • Converter slag was reduced and modified by the simultaneous addition of carbon and waste foundry sand as a $SiO_2$ source. The basic properties such as phase distribution, composition, specific density, hardness. absorption of water and compressive strength of modified slags were measured. The Iron recovery was significantly affected by the basicity of slag. The properties of slow cooled-modified slags of basicity 1.34 arc very similar to the natural aggregates.

  • PDF

Studies of the Recovery of Iron Content from Iron and Steel-Making Slags by Magnetic Separation (자력 선별에 의한 철강 슬래그로부터의 철분 회수에 관한 연구)

  • Ban Bong-Chan;Yu Sung-Nam;Kim Dong-Su
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.36-41
    • /
    • 2003
  • Although slag has an enough potential as the secondary resources due to its high content of iron, quite a large amount of slags are simply landfilled when market prices of iron and steel are not so beneficial. The purpose of this study is to investigate the basic characteristics regarding the recovery of iron content from slag by magnetic separation method for the enhancement of its recycling rate. Three kinds of slags such as blast furnace slag, water-cooled converter slag, and air-cooled converter slag were tested taking the strength of magnetic field, revolving speed of drum, and feeding rate of slag as the influential factors on the magnetic separation. For blast furnace slag, the recovery of iron was observed to increase as drum speed and feeding rate were lowered. For water-cooled converter slag, iron recovery was raised as feeding rate was increased and drum speed was lowered. Also, finer slag particles were observed to be more favorable for the higher recovery of iron content. Regarding air-cooled converter slags, higher iron recovery was accomplished when both feeding rate and drum speed were increased or decreased. In addition, when the magnetic field strength was increased the iron recovery was raised, however, the iron grade of separated product was observed to diminish because of the co-separation of impurities.

Setting Properties of High Aluminate Composite According to Various Temperature and Components

  • Li, Mao;Kim, Jin-Man;Choi, Sun-Mi;Lee, Dong-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.36-37
    • /
    • 2016
  • Among all the slags, ladle furnace slag (LFS) is reducing slag generated from electric arc furnace. After cooled rapidly by high-pressured air (atomizing technology), LFS has more amorphous phase than slow cooled slag. Therefore, it shows higher reactivity than another recycling slag. This material also is named by rapid cooling LFS (RC-LFS). Pulverized RC-LFS should be fully understood. This paper deal with the present some basic experimental properties and discussions about the setting time of pulverized RC-LFS with different gypsum under the various temperatures. According to the experimental results, the pulverized RC-LFS with gypsum can hydrate in a low-temperature environment, even though the initial and final setting time are delayed.

  • PDF

Expansion behavior of low-strength steel slag mortar during high-temperature catalysis

  • Kuo, Wen-Ten;Shu, Chun-Ya
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.261-274
    • /
    • 2015
  • This study established the standard recommended values and expansion fracture threshold values for the content of steel slag in controlled low-strength materials (CLSM) to ensure the appropriate use of steel slag aggregates and the prevention of abnormal expansion. The steel slags used in this study included basic oxygen furnace (BOF) slag and desulfurization slag (DS), which replaced 5-50% of natural river sand by weight in cement mixtures. The steel slag mortars were tested by high-temperature ($100^{\circ}C$) curing for 96 h and autoclave expansion. The results showed that the effects of the steel slag content varied based on the free lime (f-CaO) content. No more than 30% of the natural river sand should be replaced with steel slag to avoid fracture failure. The expansion fracture threshold value was 0.10%, above which there was a risk of potential failure. Based on the scanning electron microscopy (SEM) analysis, the high-temperature catalysis resulted in the immediate extrusion of peripheral hydration products from the calcium hydroxide crystals, leading to a local stress concentration and, eventually, deformation and cracking.

Centrifuge Modelling of Slag Compaction Pile (슬래그 다짐말뚝의 원심모델링)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Lee, Myung-Woog
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.191-197
    • /
    • 2002
  • This paper is experimental and numerical research results of performing centrifuge model tests to investigate the geotechnical engineering behavior of slag compaction pile as a substitute of sand compaction pile. In order to find the geotechnical engineering characteristics of the soft clay and the slag used in centrifuge model experiments, basic soil property tests, consolidation test, permeability tests and triaxial compression tests were performed. For centrifuge model tests, slags with changing relative density were used and their bearing capacity, stress concentrations in between pile and soft clay, settlement characteristics, and failure modes were investigated. As a results of centrifuge model tests, it was found that the bearing, capacity of model was increased with increasing density of slag pile and general shear failures were occured. Miniature soil pressure gauges were installed on model pile and soft ground respectively and thus vertical stress acting on them were measured. Stress concentration ratio was found to be in the range of 2.0~3.0. Bearing capacity obtained from the model test with slag was greater than that from the model test with a sand having the identical layout to each other. Thus it was confirmed the slag was an appropriate substitution of pile for sand.

  • PDF

A Fundamental Study on the Development of Soil Stabilization Materials for Soil Mixing Method using Vietnam Fly Ash and Blast Furnace Slag (베트남 플라이애시 및 고로슬래그를 활용한 지반혼합공법용 지반안정재 개발을 위한 기초연구)

  • Jae-Hyun, Park;Wan-Gyu, Yoo;Se-Gwan, Seo;Kwang-Wu, Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.111-121
    • /
    • 2022
  • It has been reported that current amount of coal ash remains almost 100 million tons and 5.85 million tons of blast furnace slag are generated annually in Vietnam. Vietnam government has encouraged the industries to increase the use of coal ash and blast furnace slag as construction materials as well as in cement production institutionally. However, limited can be applied in the construction field yet. Therefore, in this study, basic performance analysis on five different kinds of fly ash from Vietnam was conducted. In addition, the performances of blast furnace slags generated in Vietnam and Korea were compared and evaluated. Soil stabilizer compressive strength test and solidified soil unconfined compressive strength test were conducted as the basic data for the development of soil stabilizer applied to the soil mixing method using fly ash and blast furnace slag generated in Vietnam. The results showed that the Vietnamese fly ash and blast furnace slag can be used as the raw materials for soil stabilization and improvement.

Distribution Behavior of Ni between CaO-SiO2-Al2O3-MgO Slag and Cu-Ni Alloy (CaO-SiO2-Al2O3-MgO 슬래그와 Cu-Ni합금 사이의 Ni 분배거동)

  • Han, Bo-Ram;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • To obtain the fundamental information on the dissolution of nickel into the slag in the pyrometallurgical processes for treatment of wasted PCB, the distribution ratios of nickel between CaO-$SiO_2-Al_2O_3$-MgO slag and copper-5 wt%Ni alloy were measured at 1623 K to 1823 K under a controlled $CO_2$-CO atmosphere. The distribution ratio of Ni increased linearly with increasing oxygen partial pressure. Therefore, the dissolution reaction of nickel into the slags could be described by the following equation; $$Ni(l)_{metal}+\frac{1}{2}O_2(g)NiO(l)_{slag}$$ The distribution ratio of Ni increased linearly with increasing content of basic oxides(CaO and MgO) in slag. However, the distribution ratio of Ni decreased linearly with increasing temperature. From these results, the empirical equation of distribution ratio of Ni was obtained by the following equation from the analysis of experimental conditions by multiple regression. $${\log}L_{Ni}=0.4000{\log}P_{O2}-5.1{\times}10^{-4}T+0.3375\(\frac{X_{CaO}+X_{MgO}}{X_{SiO2}}\)$$