International Journal of Aeronautical and Space Sciences
/
v.18
no.2
/
pp.290-299
/
2017
Reconfigurable flight control using various kinds of adaptive control methods has been studied since the 1970s to enhance the survivability of aircraft in case of severe in-flight failure. Early studies were mainly focused on the failure of actuators. Recently, studies of reconfigurable flight controls that can accommodate complex damage (partial wing and tail loss) in conventional aircraft were reported. However, the partial wing loss effects on the aerodynamics of conventional type aircraft are quite different to those of BWB(blended wing body) aircraft. In this paper, a reconfigurable flight control algorithm was designed using a direct model reference adaptive method to overcome the instability caused by a complex damage of a BWB aircraft. A model reference adaptive control was incorporated into the inner loop rate control system enhancing the performance of the baseline control to cope with abrupt loss of stability. Gains of the model reference adaptive control were polled out using the Liapunov's stability theorem. Outer loop attitude autopilot was designed to manage roll and pitch of the BWB UAV as well. A 6-DOF dynamic model was built-up, where the normal flight can be made to switch to the damaged state abruptly reflecting the possible real flight situation. 22% of right wing loss as well as 25% loss for both vertical tail and rudder control surface were considered in this study. Static aerodynamic coefficients were obtained via wind tunnel test. Numerical simulations were conducted to demonstrate the performance of the reconfigurable flight control system.
Lee, Seung Hoon;Yoon, Yeon Ah;Jung, Jin Hyeong;Sim, Hyun su;Chang, Tai-Woo;Kim, Yong Soo
Journal of Korean Society for Quality Management
/
v.48
no.3
/
pp.511-520
/
2020
Purpose: The purpose of this study was to devise an accurate machine learning model for predicting silica concentrations following the addition of impurities, through time series analysis of mining data. Methods: The mining data were preprocessed and subjected to time series analysis using the machine learning model. Through correlation analysis, valid variables were selected and meaningless variables were excluded. To reflect changes over time, dependent variables at baseline were treated as independent variables at later time points. The relationship between independent variables and the dependent variable after n point was subjected to Pearson correlation analysis. Results: The correlation (R2) was strongest after 3 hours, which was adopted as a dependent variable. According to root mean square error (RMSE) data, the proposed method was superior to the other machine learning methods. The XGboost algorithm showed the best predictive performance. Conclusion: This study is important given the current lack of machine learning studies pertaining to the domestic mining industry. In addition, using time series analysis in mining data will show further improvement. Before establishing a predictive model for the proposed method, predictions should be made using data with time series characteristics. After doing this work, it should also improve prediction accuracy in other domains.
The paper presents the study on a change in modal parameters and structural stiffness of cable-stayed Fiberline Bridge made entirely of Glass Fiber Reinforced Polymer (GFRP) composite used for 20 years in the fjord area of Kolding, Denmark. Due to this specific location the bridge structure was subjected to natural aging in harsh environmental conditions. The flexural properties of the pultruded GFRP profiles acquired from the analyzed footbridge in 1997 and 2012 were determined through three-point bending tests. It was found that the Young's modulus increased by approximately 9%. Moreover, the influence of the temperature on the storage and loss modulus of GFRP material acquired from the Fiberline Bridge was studied by the dynamic mechanical analysis. The good thermal stability in potential real temperatures was found. The natural vibration frequencies and mode shapes of the bridge for its original state were evaluated through the application of the Finite Element (FE) method. The initial FE model was created using the real geometrical and material data obtained from both the design data and flexural test results performed in 1997 for the intact composite GFRP material. Full scale experimental investigations of the free-decay response under human jumping for the experimental state were carried out applying accelerometers. Seven natural frequencies, corresponding mode shapes and damping ratios were identified. The numerical and experimental results were compared. Based on the difference in the fundamental natural frequency it was again confirmed that the structural stiffness of the bridge increased by about 9% after 20 years of service life. Data collected from this study were used to validate the assumed FE model. It can be concluded that the updated FE model accurately reproduces the dynamic behavior of the bridge and can be used as a proper baseline model for the long-term monitoring to evaluate the overall structural response under service loads. The obtained results provided a relevant data for the structural health monitoring of all-GFRP bridge.
Electromechanical impedance (EMI) based structural health monitoring is performed by measuring the variation in the impedance due to the structural local damage. The impedance signals are acquired from the piezoelectric patches that are bonded on the structural surface. The impedance variation, which is directly related to the mechanical properties of the structure, indicates the presence of local structural damage. Two traditional EMI-based damage detection methods are based on calculating the difference between the measured impedance signals in the frequency domain from the baseline and the current structures. In this paper, a new structural damage detection approach by analyzing the time domain impedance responses is proposed. The measured time domain responses from the piezoelectric transducers will be used for analysis. With the use of the Time Frequency Autoregressive Moving Average (TFARMA) model, a damage index based on Singular Value Decomposition (SVD) is defined to identify the existence of the structural local damage. Experimental studies on a space steel truss bridge model in the laboratory are conducted to verify the proposed approach. Four piezoelectric transducers are attached at different locations and excited by a sweep-frequency signal. The impedance responses at different locations are analyzed with TFARMA model to investigate the effectiveness and performance of the proposed approach. The results demonstrate that the proposed approach is very sensitive and robust in detecting the bolt damage in the gusset plates of steel truss bridges.
Journal of the Korean Society of Systems Engineering
/
v.15
no.1
/
pp.1-8
/
2019
Reverse engineering involves examining a system or component so as to comprehend its structure, functionality, and operation. Creation of a system model in reverse engineering can serve several purposes: test generation, change impact analysis, and the creation of a new or modified system. When attempting to reverse engineering a system, often the most readily accessible information is the system description, which does not readily lend itself to use in Model Based System Engineering (MBSE). Therefore, it is necessary to be able to transform this description into a diagram, which clearly depicts the behavior of the system as well as the interaction between components. This study demonstrates how sequence diagrams can be extracted from the systems description. Using MBSE software, the sequence diagrams for the Engineered Safety Features Component Control System (ESF-CCS) of the Nuclear Power Plant are created. Sequence diagrams are chosen because they are a means of representing the systems behavior and the interaction between components. In addition, from these diagrams, the system's functional requirements can be elicited. These diagrams then serve as the baseline of the reverse engineering process and multiple system views are subsequently be created from them, thus speeding up the development process. In addition, the use of MBSE ensures that any additional information obtained from auxiliary sources can then be input into the system model, ensuring data consistency.
Purpose : This study can provide various implications for the franchisors to expand activities related to franchise support or to develop andoperate an education program for foodservice franchise owners. Research design, data, and methodology : For those purpose, first, the literatureand literature related to the competency of domestic franchise owner were collected and reviewed through the Korea Education and Research Information Service (RISS). Second, the questionnaire was prepared based on the theoretical basis prepared through previous studies. Based onthe foodservice franchise owner's competency model presented by Kim & Lee (2019b), 13 franchise owner's competencies were marked with both 'What is' levels and 'What should be' levels. Therefore, the total questionnaire consists of 26 questions. Third, questionnaires were distributed and collected. This study used data from 55 surveys which were gathered from foodservice franchise owners in Seongnam-si. SPSS 25.0 was used to analyze the collected survey data. Descriptive and frequency analysis were conducted to analyze the demographic characteristics of the study subjects. Next, we conduct a t-test to analyze the difference between the level of 'What is' competencies by the franchise owners and the level of 'What should be' competencies. Descriptive statistics were used to derive the priorities of the 'What should be' competencies. The Locus for Focus model was used to derive the priorities of the required competencies. Result : Four competencies of team leadership, teamwork and cooperation, customer service, technical·professional·managerial expertise were found to be the first to be developed. Conclusions : The conclusions of this study are as follows. First, teamwork and cooperation competnecy, and team leadership competency, which are derived from the core competencies of foodservice franchise owners, are among the leadership competencies required as managers of organizations. Second, customer service competency and ttechnical·professional·managerial expertise competency derived from the core competencies of restaurant franchise owners belong to the job competencies. Third, the results of this study suggest that the foodservice franchisors will be able that will serve as a baseline to support the foodservice franchisors and franchise owners for sustainable mutual growth by encouraging their will and encouraging them to create results.
Kwon, Tae-Eun;Yoon, Seokwon;Ha, Wi-Ho;Chung, Yoonsun;Jin, Young Woo
Journal of Radiation Protection and Research
/
v.46
no.4
/
pp.170-177
/
2021
Background: The International Commission on Radiological Protection is preparing to provide reference dose coefficients for environmental radioiodine intake based on newly developed age-specific biokinetic models. However, the biokinetics of iodine has been reported to be strongly dependent on the dietary intake of stable iodine; for example, the thyroidal uptake of iodine may be substantially lower in iodine-rich regions than in iodine-deficient regions. Therefore, this study attempted to establish a system of age-specific thyroid dose estimation for South Koreans, whose daily iodine intakes are significantly higher than that of the world population. Materials and Methods: Korean age-specific biokinetic parameters and thyroid masses were derived based on the previously developed Korean adult model and the Korean anatomical reference data for adults, respectively. This study complied with the principles used in the development of age-specific biokinetic models for world population and used the ratios of baseline values for each age group relative to the value for adults to derive age-specific values. Results and Discussion: Biokinetic model predictions based on the Korean age-specific parameters showed significant differences in iodine behaviors in the body compared to those predicted using the model for the world population. In particular, the Korean age-specific thyroid dose coefficients for 129I and 131I were considerably lower than those calculated for the world population (25%-76% of the values for the world population). Conclusion: These differences stress the need for Korean-specific internal dose assessments for infants and children, which can be achieved by using the data calculated in this study.
Zhou, Han;Guo, Xuchao;Liu, Chengqi;Tang, Zhan;Lu, Shuhan;Li, Lin
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.11
/
pp.3991-4010
/
2021
The Question Similarity Measurement of Chinese Crop Diseases and Insect Pests (QSM-CCD&IP) aims to judge the user's tendency to ask questions regarding input problems. The measurement is the basis of the Agricultural Knowledge Question and Answering (Q & A) system, information retrieval, and other tasks. However, the corpus and measurement methods available in this field have some deficiencies. In addition, error propagation may occur when the word boundary features and local context information are ignored when the general method embeds sentences. Hence, these factors make the task challenging. To solve the above problems and tackle the Question Similarity Measurement task in this work, a corpus on Chinese crop diseases and insect pests(CCDIP), which contains 13 categories, was established. Then, taking the CCDIP as the research object, this study proposes a Chinese agricultural text similarity matching model, namely, the AgrCQS. This model is based on mixed information extraction. Specifically, the hybrid embedding layer can enrich character information and improve the recognition ability of the model on the word boundary. The multi-scale local information can be extracted by multi-core convolutional neural network based on multi-weight (MM-CNN). The self-attention mechanism can enhance the fusion ability of the model on global information. In this research, the performance of the AgrCQS on the CCDIP is verified, and three benchmark datasets, namely, AFQMC, LCQMC, and BQ, are used. The accuracy rates are 93.92%, 74.42%, 86.35%, and 83.05%, respectively, which are higher than that of baseline systems without using any external knowledge. Additionally, the proposed method module can be extracted separately and applied to other models, thus providing reference for related research.
[Purpose] This study investigated the effects of marine phytoplankton supplementation (Oceanix®, Tetraselmis chuii) on 1) maximal isometric strength and immune function in healthy humans following a oneweek high-intensity resistance-training program and 2) the proinflammatory cytokine response to exercise in a rat model. [Methods] In the human trial, 22 healthy male and female participants were randomly divided into marine phytoplankton and placebo groups. Following baseline testing, participants underwent a 14-day supplement loading phase before completing five consecutive days of intense resistance training. In the rat model, rats were randomly divided into four groups (n=7 per condition): (i) control, (ii) exercise, (iii) exercise + marine phytoplankton (2.55 mg/kg/day), or (iv) exercise + marine phytoplankton (5.1 mg/kg/day). Rats in the exercising groups performed treadmill exercise 5 days per week for 6 weeks. [Results] In the human model, marine phytoplankton prevented significant declines in the isometric peak rate of force development compared to placebo. Additionally, salivary immunoglobulin A concentration was significantly lower following the resistance training protocol in the placebo group but not in the marine phytoplankton group. Marine phytoplankton in exercising rats decreased intramuscular levels and serum concentrations of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) and intramuscular concentrations of malondialdehyde. [Conclusion] Marine phytoplankton prevented decrements in indices of functional exercise recovery and immune function. Mechanistically, these outcomes could be prompted by modulating the oxidative stress and proinflammatory cytokine response to exercise.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.5
/
pp.1396-1412
/
2023
Conversation modeling is an important and challenging task in the field of natural language processing because it is a key component promoting the development of automated humanmachine conversation. Most recent research concerning conversation modeling focuses only on the current utterance (considered as the current question) to generate a response, and thus fails to capture the conversation's logic from its beginning. Some studies concatenate the current question with previous conversation sentences and use it as input for response generation. Another approach is to use an encoder to store all previous utterances. Each time a new question is encountered, the encoder is updated and used to generate the response. Our approach in this paper differs from previous studies in that we explicitly separate the encoding of the question from the encoding of its context. This results in different encoding models for the question and the context, capturing the specificity of each. In this way, we have access to the entire context when generating the response. To this end, we propose a deep neural network-based model, called the Context Model, to encode previous utterances' information and combine it with the current question. This approach satisfies the need for context information while keeping the different roles of the current question and its context separate while generating a response. We investigate two approaches for representing the context: Long short-term memory and Convolutional neural network. Experiments show that our Context Model outperforms a baseline model on both ConvAI2 Dataset and a collected dataset of conversational English.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.