• Title/Summary/Keyword: baseflow separation method

Search Result 22, Processing Time 0.034 seconds

Pollutant Load Characteristics by Baseflow in a Small Agricultural Watershed (농업소하천 유역의 기저유출에 의한 오염부하특성)

  • Shin, Yongchul;Lyou, Changwon;Choi, Ye Hwan;Lim, Kyuong Jae;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.244-249
    • /
    • 2006
  • Natural environment of Weolgokri watershed has been well preserved as a traditional agricultural watershed. A year record of streamflow, $NO_3-N$, T-N and T-P concentrations data (April 2004 - Mar. 2005) were examined to estimate annual and seasonal patterns of pollutant loads in streamflow and baseflow from the agricultural watershed. To estimate pollutant loads from baseflow, baseflow component was separated from streamflow using the digital filter method in the Web-based Hydrograph Analysis Tool system and loads of $NO_3-N$, T-N and T-P from streamflow and baseflow were evaluated. The $NO_3-N$, T-N, and T-P loads from streamflow were 13.85 kg/ha, 45.92 kg/ha and 1.887 kg/ha, respectively, while corresponding loads from baseflow were 7.43 kg/ha, 24.70 kg/ha, 0.582 kg/ha, respectively. It was found that $NO_3-N$ and T-N loads were contributed slightly more by the baseflow (53% and 53% of Total-loads) than by the direct runoff (47% and 47% of Total loads). However, only 30% of total T-P load was contributed by the baseflow. It is recommended that one needs to assess pollutant load contribution by the baseflow to identify appropriate pollution control strategies for an effective watershed management.

Investigating the Impact of Best Management Practices on Nonpoint Source Pollution from Agricultural Lands

  • ;Saied Mostaghimi
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.1-19
    • /
    • 1990
  • Abstract Over the last several decades, crop production in the United States increased largely due to the extensive use of animal waste and fertilizers as plant nutrient supplements, and pesticides for crops pests and weed control. Without the application of animal waste best management, the use of animal waste can result in nonpoint source pollution from agricultural land area. In order to increase nutrient levels and decrease contamination from agricultural lands, nonpoint source pollution is responsible for water quality degradation. Nonpoint source pollutants such as animal waste, ferilizers, and pesticides are transported primarily through runoff from agricultural areas. Nutrients, primarily nitrogen and phosphorus, can be a major water quality problem because they cause eutrophic algae growth. In 1985, it was presented that Watershed/Water Quality Monitoring for Evaluation BMP Effectiveness was implemented for Nomini Creek Watershed, located in Westmoreland County, Virginia. The watershed is predominantly agricultural and has an aerial extent of 1505 ha of land, with 43% under cropland, 54% under woodland, and 3% as homestead and roads. Rainfall data was collected at the watershed from raingages located at sites PNI through PN 7. Streams at stations QN I and QN2 were being measured with V-notch weirs. Water levels at the stream was measured using an FW-l Belfort (Friez FWl). The water quality monitoring system was designed to provide comprehensive assessment of the quality of storm runoff and baseflow as influenced by changes in landuse, agronomic, and cultural practices ill the watershed. As this study was concerned with the Nomini Creek Watershed, the separation of storm runoff and baseflow measured at QNI and QN2 was given by the master depletion curve method, and the loadings of baseflow and storm runoff for TN (Total Nitrogen) and TP (Total Phosphorus) were analyzed from 1987 through 1989. The results were studied for the best management practices to reduce contamination and loss of nutrients, (e.g., total nitrogen and total phosphorus) by nonpoint source pollution from agricultural lands.

  • PDF

Estimation of the Groundwater Recharge Rate during a Rainy Season at a Headwater Catchment in Gwangneung, Korea (광릉 원두부 소유역에서의 우기 중 지하수 함양률 평가)

  • Choi, In-Hyuk;Woo, Nam-Chil;Kim, Su-Jin;Moon, Sang-Ki;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.75-87
    • /
    • 2007
  • Groundwater recharge rates were estimated and compared in a headwater catchment at the Gwangneung Supersite using three different methods: water-table fluctuation (WTF), mass balance, and hydrograph separation techniques. Data were obtained during the rainy season from June to September 2005. Two different WTF methods estimated the groundwater recharge rate as 25.9% and 23.6%. The mass balance calculation of chloride ions indicated recharge rates of 13.4% on average. Baseflow separation using chloride ion as a tracer from six storm hydrographs produced a 14.0% net baseflow rate on average. Because of the implicit assumption of a long-term steady state without storage change, recharge rates calculated by mass balance and hydrograph separation were smaller than those done with WTF methods, which include the amount of increased storage due to the water-level rise. Subsequently, the WTF method is superior to others in the estimation of groundwater recharge rate to comprehend the dynamic characteristics of the hydrologic cycle.

Method of Estimating Groundwater Recharge with Spatial-Temporal Variability (시공간적 변동성을 고려한 지하수 함양량의 추정 방안)

  • Kim, Nam-Won;Chung, Il-Moon;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.517-526
    • /
    • 2005
  • In Korea, the methods of estimating groundwater recharge can categorized into two groups. One is baseflow separation method by means of groundurater recession curve, the other is water level fluctuation method by using the data from groundwater monitoring wells. Baseflow separation method is based on annual recharge and lumped concept, and water-table fluctuation method is largely dependent on monitoring wells rather than water budget in watershed. However, groundwater recharge rate shows the spatial-temporal variability due to climatic condition, land use and hydrogeological heterogeneity, these methods have various limits to deal with these characteristics. For this purpose, the method of estimating daily recharge rate with spatial variability based on distributed rainfall-runoff model is suggested in this study. Instead of representative recharge rate of large watershed, the subdivided recharge rate with heterogeneous characteristics can be computed in daily base. The estimated daily recharge rate is an advanced quantity reflecting the heterogeneity of hydrogeology, climatic condition, land use as well as physical behaviour of water in soil layers. Therefore, the newly suggested method could be expected to enhance existing methods.

Base Flow Estimation in Uppermost Nakdong River Watersheds Using Chemical Hydrological Curve Separation Technique (화학적 수문곡선 분리기법을 이용한 낙동강 최상류 유역 기저유출량 산정)

  • Kim, Ryoungeun;Lee, Okjeong;Choi, Jeonghyeon;Won, Jeongeun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.489-499
    • /
    • 2020
  • Effective science-based management of the basin water resources requires an understanding of the characteristics of the streams, such as the baseflow discharge. In this study, the base flow was estimated in the two watersheds with the least artificial factors among the Nakdong River watersheds, as determined using the chemical hydrograph separation technique. The 16-year (2004-2019) discontinuous observed stream flow and electrical conductivity data in the Total Maximum Daily Load (TMDL) monitoring network were extended to continuous daily data using the TANK model and the 7-parameter log-linear model combined with the minimum variance unbiased estimator. The annual base flows at the upper Namgang Dam basin and the upper Nakdong River basin were both analyzed to be about 56% of the total annual flow. The monthly base flow ratio showed a high monthly deviation, as it was found to be higher than 0.9 in the dry season and about 0.46 in the rainy season. This is in line with the prevailing common sense notion that in winter, most of the stream flow is base flow, due to the characteristics of the dry season winter in Korea. It is expected that the chemical-based hydrological separation technique involving TANK and the 7-parameter log-linear models used in this study can help quantify the base flow required for systematic watershed water environment management.

A Method of Estimating the Volume of Exploitable Groundwater Considering Minimum Desirable Streamflow (최소하천유출량을 고려한 지하수 개발가능량 산정방안)

  • Chung, Il-Moon;Lee, Jeongwoo
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.375-380
    • /
    • 2013
  • The concept of safe yield places an emphasis on balancing groundwater withdrawal with groundwater recharge but ignores naturally occurring groundwater discharge. Because streams and their alluvial aquifers are closely linked in terms of water supply and water quality, to be properly understood and managed they must be considered together. Therefore, some districts in Kansas have reevaluated their safe-yield policies to account for natural groundwater discharge and stream-aquifer interactions by amending their safe-yield regulations to include a portion of baseflow as the minimum desirable streamflow (MDS). This study proposes a modified safe-yield policy in which the drought flow is chosen as the MDS. Baseflow separation was conducted from streamflow hydrograph and the results are presented as a flow-duration curve. The exploitable groundwater can be determined by subtracting MDS from the cumulative baseflow. This method was tested in the Musimcheon watershed, which was validated for streamflow using the SWAT-K model. The annually averaged exploitable groundwater in the whole watershed was estimated to be 86 mm. The exploitable groundwater amounts were also estimated for each subwatershed in the Musimcheon watershed.

Estimating Exploitable Groundwater as a Function of Precipitation Using a Distributed Hydrologic Model and Frequency Analysis (분포형 수문모형과 빈도해석을 이용한 강수량별 지하수 개발가능량 산정)

  • Kim, Minsoo;Jeong, Gyocheol;Lee, Jeong Eun;Kim, Min-Gyu
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.253-268
    • /
    • 2020
  • In this study, recharge rates are estimated using SWAT-K (a distributed hydrological model). The validity of the estimated recharge rates were evaluated by employing the baseflow separation method based on observed hydrological data. The exploitable groundwater is typically determined as the 10-year drought frequency recharge rate that is calculated by average recharge ratio multiplied by 10-year drought frequency precipitation. In practice, however, recharge rates typically decrease in line with precipitation; therefore, exploitable groundwater could be overestimated when average recharge rates are used without considering precipitation. To resolve this overestimation, exploitable groundwater was calculated by re-estimating recharge rates that consider precipitation intensity. By applying this method to the Uiwang, Gwacheon, and Seongnam sub-basins, the exploitable groundwater decreased by 55.5~77.6%, compared with recharge rates obtained using the existing method.

Long Terms Baseflow Separation Using Moving Average Method (이동평균법을 이용한 장기간 기저유출분석)

  • Lee, Sang-Sin;Lee, Sang-Il;Kim, Joon-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1233-1237
    • /
    • 2010
  • 강변여과는 지표수와 지하수가 각기 갖는 장점과 제약점을 상호 보완하여 수질이 양호한 상수원수를 대량 확보하기 위한 실제적 대안이다. 자연적인 여과작용에 의해 수질이 개선되는 효과가 있어 경제적이고 안정적으로 확보할 수 있지만, 장기간 취수는 지하수위의 저하를 가져 올 수 있으므로 유역의 수문분석을 통한 기저유출량 산정에 관한 연구가 필요하다. 대상지역으로는 현재 강변여과를 개발중인 창원시 대산정수장 취수장 지역이며, 대상지역의 기저유출량을 산정하기 위해 대상지역 상류에 위치한 낙동강 본포교의 낙동강 유량을 기초로 기저유출량을 산정하여 지하수 함양율을 평가하였다. 수문곡선 분리는 여러 방법 중 다른 방법보다 상대적으로 간편하고 실무에서 많이 사용되는 방법인 수평직선분리법을 사용하여 적정 취수 가능량을 산정하기 위한 최소 기저유출량을 산정하고자 한다. 이에 따라, 보유 자료 중 연 평균 최저 유출량을 보인 2008년 가을 갈수기의 시작(2008년 10월)부터 2009년 가을 갈수기의 시작(2009년 10월)까지의 자료를 분석했다. 본포교 유량 자료는 8일부터 10일 간격으로 측정되고 있기 때문에 결측치는 최인접 두 지점 사이의 선형보간법으로 보완했다. 다소 많은 양의 결측치에 대한 보정과 해당 유역의 연간 유출 특성을 파악하기 위해서 이동평균(moving average)을 적용했으며, 적용 결과 관측 주기에 해당하는 10일 이동평균 유출수문곡선이 가장 적합한 것으로 나타났다. 10일 이동평균에 의한 유출수문곡선에 의하면 상승부의 기점은 2009년 6월 12일로 나타났으며 유출량은 47.87cms로 나타났다. 따라서 총 기저유출량은 상승부 기점의 유출량으로 111일 동안 발생하는 것을 알 수 있었으며 그 총량은 약 45,900만$m^3$으로 나타났다. 본 연구에서의 결과 본포교를 유역출구로 하는 이 유역에는 임의 유출이 생기는 호우사상 시, 기저유출량은 총 유출량의 6.38%를 최소한 기대할 수 있음을 알 수 있다.

  • PDF

The Estimation of Groundwater Recharge with Spatial-Temporal Variability at the Musimcheon Catchment (시공간적 변동성을 고려한 무심천 유역의 지하수 함양량 추정)

  • Kim Nam-Won;Chung Il-Moon;Won Yoo-Seung;Lee Jeong-Woo;Lee Byung-Ju
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.9-19
    • /
    • 2006
  • The accurate estimation of groundwater recharge is important for the proper management of groundwater systems. The widely used techniques of groundwater recharge estimation include water table fluctuation method, baseflow separation method, and annual water balance method. However, these methods can not represent the temporal-spatial variability of recharge resulting from climatic condition, land use, soil storage and hydrogeological heterogeneity because the methods are all based on the lumped concept and local scale problems. Therefore, the objective of this paper is to present an effective method for estimating groundwater recharge with spatial-temporal variability using the SWAT model which can represent the heterogeneity of the watershed. The SWAT model can simulate daily surface runoff, evapotranspiration, soil storage, recharge, and groundwater flow within the watershed. The model was applied to the Musimcheon watershed located in the upstream of Mihocheon watershed. Hydrological components were determined during the period from 2001 to 2004, and the validity of the results was tested by comparing the estimated runoff with the observed runoff at the outlet of the catchment. The results of temporal and spatial variations of groundwater recharge were presented here. This study suggests that variations in recharge can be significantly affected by subbasin slope as well as land use.

Estimation of Groundwater Usage for Water Curtain Cultivation using a Rating Curve (수위-유량 관계곡선을 이용한 수막재배용 지하수 사용량 추정)

  • Lee, Bong-Joo;Kim, YongCheol;Cho, Byung-Wook;Yoon, Uk;Ha, Kyoolchul;Lee, Byeong-Dae;Moon, Sang-Ho;Yoon, Philsun;Kim, Sung-Yun
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • A method is proposed to estimate groundwater usage for water curtain cultivation (WCC) using a rating curve, and it is applied to field measurements of groundwater discharge used for WCC in Wangjeon-ri, Nonsan. During the winter season, the hydraulic components of irrigation ditches in the study area consist mainly of direct run-off and groundwater discharged from nearby pumping wells. Changes in stage of the ditches were monitored, and a baseflow separation method was applied to remove increments in stage due to direct run-off. The resulting records of stage were translated to groundwater discharge by applying the-stage-discharge relation. The estimated average groundwater discharge for the WCC in Wangjeon-ri was 10,900 m3/d or 420 m3/d/ha when the estimation is normalized by the total area for WCC facilities of this region. Applying this estimation (420 m3/d/ha) to the entire area of the WCC in Korea (10,746 ha),and considering the number of pumping days for the WCC (120 days/year), the total ground water usage for the WCC nation-wide is estimated to be 0.54 billion m3. This is equivalent to 32% of the total groundwater discharge for agricultural use in Korea (1.7 billon m3).