• Title/Summary/Keyword: base-metal

Search Result 1,596, Processing Time 0.027 seconds

Transient Liquid Phase Bonding of Directionally Solidified Ni Base Superalloy, GTD-111(II) -Microstructural Change of Base Metal during Bonding Process - (일방향응고 Ni기초내열합금 GTD-111의 천이액상확산접합(II) -접합공정에서 모재조직의 변화-)

  • 강정윤;황형철;김인배;김대업;우인수
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.89-96
    • /
    • 2003
  • The change of microstructures in the base metal during transient liquid phase bonding process of directionally Ni base superalloy, GTD-111 was investigated. Bonds were fabricated using a series of holding times(0-7.2ks) at three different temperatures(1403, 1418 and 1453K) under a vacuum of 13.3mPa. In raw material, ${\gamma}$- ${\gamma}$' eutectic phases, platelet η phases, MC carbide and PFZ were seen in interdendritic regions or near grain boundary and size of primary ${\gamma}$' precipitates near interdendritic regions were bigger than core region. The primary ${\gamma}$' precipitates in dendrite core were dissolved early in bonding process, but ${\gamma}$' precipitates near interdendritic regions were dissolved partially and shape changed. The dissolution rate increased with increasing temperature. Phases in interdendritic regions or near pain boundary continually changed with time at the bonding temperature. In the bonding temperature of 1403K, eutectic phases had not significantly changed, but η phases had transformed from platelet shape to needle morphology and PFZ region had widened with time. The interdendritic region and near pain boundary were liquated partially at 1423k and fully at 1453k by reaction of η phases and PFZ. In the bonding temperature of 1453K, interdendritic region and near pain boundary were liquated and then new phases which mixed with η phases, PFZ and MC carbide crystallized during cooling. Crystallized η phases transformed from rod shape to platelet shape with increasing holding time.

Color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for non metal clasp denture

  • Jang, Dae-Eun;Lee, Ji-Young;Jang, Hyun-Seon;Lee, Jang-Jae;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.278-287
    • /
    • 2015
  • PURPOSE. The aim of this study was to compare the color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for the non-metal clasp dentures to those of thermoplastic polyamide and conventional heat-polymerized denture base resins. MATERIALS AND METHODS. Three types of denture base resin, which are conventional heat-polymerized acrylic resin (Paladent 20), thermoplastic polyamide resin (Bio Tone), thermoplastic acrylic resin (Acrytone) were used as materials for this study. One hundred five specimens were fabricated. For the color stability test, specimens were immersed in the coffee and green tee for 1 and 8 weeks. Color change was measured by spectrometer. Water sorption was tested after 1 and 8 weeks immersion in the water. For the test of cytotoxicity, cell viability assay was measured and cell attachment was analyzed by FE-SEM. RESULTS. All types of denture base resin showed color changes after 1 and 8 weeks immersion. However, there was no significant difference between denture base resins. All specimens showed significant color changes in the coffee than green tee. In water sorption test, thermoplastic acrylic resin showed lower values than conventional heat-polymerized acrylic resin and thermoplastic polyamide resin. Three types of denture base showed low cytotoxicity in cell viability assay. Thermoplastic acrylic resin showed the similar cell attachment but more stable attachment than conventional heat-polymerized acrylic resin. CONCLUSION. Thermoplastic acrylic resin for the non-metal clasp denture showed acceptable color stability, water sorption and cytotoxicity. To verify the long stability in the mouth, additional in vitro studies are needed.

Effect of Nitrogen Content on SAW Weld Metal Properties (SAW 용접금속 성질에 미치는 질소함량의 영향)

  • Byeon, Ji-Cheol;Bang, Guk-Su;Lee, Jong-Bong;An, Yeong-Ho
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.147-149
    • /
    • 2005
  • Effect of nitrogen content on SAW weld metal properties were investigated. Weld metal nitrogen content increased with an increase of base metal nitrogen content due to dilution. High nitrogen content in weld metal resulted in high free nitrogen content, and consequently reduced impact toughness due to, mainly, strain aging effect.

  • PDF

The behavior of strength on friction welding of dissimilar steels by various heating time : in case of SM45C and SUS304 materials (이종강의 마찰압접시 압접시간 변화에 따른 강도거동-SM45C와 SUS304재의 경우)

  • 박명과;박명과
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.762-771
    • /
    • 1987
  • Friction welding is a fusion process in which the necessary heat is generated by clamping one of the two pieces to be welded in a stationary chuck and rotating the other at high speed with an axially applied load. It is essentially a variation of the pressure welding process but utilizes a novel heating method. In addition to the foregoing advantages, it has also been reported excellent for welding dissimilar materials. Therefore, this study reported on investigating the strength behavior for the frictionally welded domestic structural steel SM45C and SUS304. The results obtained by the experiments are as follows. (1) The highest tensile strength of the best friction welded specimen (B4) is about 3% lower than that of SM-45C base metal, and 9% lower than that of SUS304 base metal. The heat treated specimens (850.deg.C 1hr A.C) have almost same value of tensile strength. (2) The strain of SM45C base metal is 27.3% and that of SUS304 is 42%, that of the best friction welded specimen (B4) appeared as 11.9% which is about 50% lower than the base metal, so, this same phenomenon apeared in all the other welding conditions. (3) The bending strength of SM45C base metal is 123kgf/mm$^{2}$ and that of SUS304 is 127kgf/mm$^{2}$. The best specimen (B4) appeared as 121kgf/mm$^{2}$ which is almost same bending strength for both base metals. (4) The friction welded condition involving maximum strength is determined by P$_{1}$=8kgf/mm$_{2}$, P$_{2}$=22kgf/mm$_{2}$, T$_{1}$=10sec, T$_{2}$=2sec, and amount of upset 7.6mm. (5) The interface of two dissimilar materials are mixed strongly, and welded zone is about 1.03mm and also the heat affected zone is about 2.36mm at SM45C while about 1.85mm at SUS304, therefore the welded zone and heat affected zone are very narrow to compare with those of the other welding materials.

Corrosion Fatigue Cracking Propagation Characteristics and its Protection for the AL-Alloys of Shipbuilding (선박용 알루미늄 합금재의 부식피로균열 진전특성과 그 억제에 관한 연구)

  • Lim, Uh-Joh;Kim, Soo-Byung;Lee, Jin-Yel
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.2
    • /
    • pp.87-104
    • /
    • 1989
  • Recently, with the tendency of more lightening, high-strength and high-speed in the marine industries such as marine structures, ships and chemical plants, the use of the aluminium Alloy is rapidly enlarge and there occurs much interest in the study of corrosion fatigue crack characteristics. In this paper, the initiation of surface crack and the propagation characteristics on the base metal and weld zone of 5086-H116 Aluminium Alloy Plate which is one of the Al-Mg serious alloy(A5000serious) used most when building the special vessels, were investigated by the plane bending corrosion fatigue under the environments of marine, air and applying cathodic protection. The effects of various specific resistances on the initiation, propagation behavior of corrosion fatigue crack and corrosion fatigue life in the base metal and heat affected zone were examined and its corrosion sensitivity was quantitatively obtained. The effects of corrosion on the crack depth in relation to the uniform surface crack length were also investigated. Also, the structural, mechanical and electro-chemical characteristics of the metal at the weld zone were inspected to verify the reasons of crack propagation behavior in the corrosion fatigue fracture. In addition, the effect of cathodic protection in the fracture surface of weld zone was examined fractographically by Scanning Electron Microscope(S.E.M.). The main results obtained are as follows; (1) The initial corrosion fatigue crack sensitibity under specific resistance of 25Ω.cm% show 2.22 in the base metal and 19.6 in the HEZ, and the sensitivity decreases as specific resistance increases (2) By removing reinforcement of weldment, the initiation and propagation of corrosion crack in the HAZ are delayed, and corrosion fatigue life increases. (3) As specific resistance decreases, the sensitivity difference of corrosion fatigue life in the base metal and HAZ is more susceptible than that of intial corrosion fatigue crack. (4) Experimental constant, m(Paris' rule) in the marine environment is in the range of about 3.69 to 4.26, and as specific resistance increases, thje magnitude of experimental constant, also increases and the effect by corrosion decreases. (5) Comparing surface crack length with crack depth, the crack depth toward the thickness of specimen in air is more deeply propagated than that in corrosion environment. (6) The propagation particulars of corrosion fatigue crack for HAZ under initial stress intensity factor range of $\Delta$k sub(li) =27.2kgf.mm super(-3/2) and stress ratio of R=0 shows the retardative phenomenon of crack propagation by the plastic deformation at crack tip. (7) Number of stress cycles to corrosion fatigue crack initiation of the base metal and the welding heat affected zone are delayed by the cathodic protection under the natural sea water. The cathodic protection effect for corrosion fatigue crack initiation is eminent when the protection potential is -1100 mV(SCE). (8) When the protection potential E=-1100 mV(SCE), the corrosion fatigue crack propagation of welding heat affected zone is more rapid than that of the case without protection, because of the microfissure caused by welding heat cycle.

  • PDF

MACRO-SHEAR BOND STRENGTH AND MICRO-SHEAR BOND STRENGTH OF CEROMER BONDED TO METAL ALLOY AND FIBER REINFORCED COMPOSITE

  • Park Hyung-Yoon;Cho Lee-Ra;Cho Kyung-Mo;Park Chan-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.6
    • /
    • pp.654-663
    • /
    • 2004
  • Statement of problem. According to the fracture pattern in several reports, fractures most frequently occur in the interface between the ceromer and the substructure. Purpose. The aim of this in vitro study was to compare the macro shear bond strength and microshear bond strength of a ceromer bonded to a fiber reinforced composite (FRC) as well as metal alloys. Material and methods. Ten of the following substructures, type II gold alloy, Co-Cr alloy, Ni-Cr alloy, and FRC (Vectris) substructures with a 12 mm in diameter, were imbedded in acrylic resin and ground with 400, and 1, 000-grit sandpaper. The metal primer and wetting agent were applied to the sandblasted bonding area of the metal specimens and the FRC specimens, respectively. The ceromer was placed onto a 6 mm diameter and 3 mm height mold in the macro-shear test and 1 mm diameter and 2 mm height mold in the micro-shear test, and then polymerized. The macro- and micro-shear bond strength were measured using a universal testing machine and a micro-shear tester, respectively. The macro- and micro-shear strength were analyzed with ANOVA and a post-hoc Scheffe adjustment ($\alpha$ = .05). The fracture surfaces of the crowns were then examined by scanning electron microscopy to determine the mode of failure. Chi-square test was used to identify the differences in the failure mode. Results. The macro-shear strength and the micro-shear strength differed significantly with the types of substructure (P<.001). Although the ceromer/FRC group showed the highest macroand micro-shear strength, the micro-shear strength was not significantly different from that of the base metal alloy groups. The base metal alloy substructure groups showed the lowest mean macro-shear strength. However, the gold alloy substructure group exhibited the least micro-shear strength. The micro-shear strength was higher than the macro-shear strength excluding the gold alloy substructure group. Adhesive failure was most frequent type of fracture in the ceromer specimens bonded to the gold alloys. Cohesive failure at the ceromer layer was more common in the base metals and FRC substructures. Conclusion. The Vectris substructure had higher shear strength than the other substructures. Although the shear strength of the ceromer bonded to the base metals was lower than that of the gold alloy, the micro-shear strength of the base metals were superior to that of the gold alloy.

Effect of Induction Heat Bending Process on the Properties of ASME SA106 Gr. C Carbon Steel Pipes

  • Kim, Ki Tae;Kim, Young Sik;Chang, Hyun Young;Oh, Young Jin;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.47-53
    • /
    • 2015
  • Recently, the bending process is greatly applied to fabricate the pipe line. Bending process can reduce welding joints and then decrease the number of inspection. Thus, the maintenance cost will be reduced. Induction heat bending process is composed of bending deformation by repeated local heat and cooling. By this thermal process, corrosion properties and microstructure can be affected. This work focused on the effect of induction heating bending process on the properties of ASME SA106 Gr. C low carbon steel pipes. Microstructure analysis, hardness measurements, and immersion corrosion test were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. Hardness was measured using a Rockwell B scale. Induction heat bending process has influenced upon the size and distribution of ferrite and pearlite phases which were transformed into finer structure than those of base metal. Even though the fine microstructure, every bent area showed a little lower hardness than that of base metal. It is considered that softening by the bending process may be arisen. Except of I2, intrados area, the others showed a similar corrosion rate to that of base metal. But even relatively high rate of intrados area was very low and acceptable. Therefore, it is judged that induction heat bending process didn't affect boric acid corrosion behaviour of carbon steel.

EFFECTS OF AGING TREATMENT ON MICROSTRUCTURE AND STRENGTH OF WELD HEAT AFFECTED ZONE OF 6N01-T5 ALUMINUM ALLOY

  • Yoshida, Naoharu;Shibao, Masami;Ema, Mitsuhiro;Sasabe, Seiji;Hirose, Akio;Kobayashi, Kojiro F.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.59-64
    • /
    • 2002
  • Effects of the aging treatments on the microstructure and strength of heat affected zone(HAZ) in the welds of a age-hardened Al-Mg-Si alloy, 5N01-T5, were investigated. The base metal aging treatments before MIG welding were conducted at 423K to 473K for 28.8ks Post weld heat treatment(PWHT) to recover the HAZ strength was performed at 448K for 28.8ks. Microstructure observations, hardness measurements and tensile tests were conducted to study properties of the MIG weld joints. The position of the softest region in HAZ where the hardness insufficiently recovered after natural aging and PWHT was at a distance of approximately 15mm from the center of the fusion zone. Hardness of the softest regions after natural aging and PWHT decreased with increase in the base metal aging temperature. TEM observation clarified that strengthening ${\beta}$"(Mg$_2$Si) precipitates and coarse ${\beta}$′ precipitates affected the hardnes of HAZ. Incomplete recover of hardness in HAZ after PWHT was caused by the precipitating of non-hardening ${\beta}$′ phase during the weld thermal cycle. In order to examine the effects of weldheat input and welding speed, the laser weld joints were also investigated and compared with the MIG weld ones. Laser welding had the narrower width of the softened regions in HAZ compared with MIG welding. The hardness of the softest regions of the laser welds after PWHT was higher than that of the MIG welds. Quantitative relations between hardness of the softest region and base metal aging temperature were obtained for both welding processes. Accordingly, the equations to estimate the strength of the weld joints after PWHT with varying base metal temperatures were proposed for MIG welding and laser welding.

  • PDF

The Effects of Start Block and Arc Length on Melt Through and Unmelted Zone at Welding Start in High Speed Plasma Arc Welding of Thin Plate (박판 고속 플라즈마 맞대기 용접에서 용접 시작부의 용락과 미용융에 미치는 시작블록과 아크길이의 영향)

  • Chu, Yong-Su;Hong, Seong-Joon;Jung, Jae-Pil;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.92-97
    • /
    • 2008
  • In welding of thin plate, some defects such as melt through and unmelted zone occur easily at welding start, however there is a limited study on those problems. Therefore the effects of start block and arc length on melt through and unmelted zone at start were investigated in this study. When start block height was lower than base metal, there was melt through at start. And when the height was even with base metal, no unmelted zone existed. Unmelted zone was increased as start block height increased from 0mm to 0.5mm. However unmelted zone was not much changed as the height increasing from 0.5mm to 1.0mm. When gap existed between start block and base metal, melt through occurred. However, unmelted zone was increased as the contact force of start block on base metal was increased from 0kgf to 7.5kgf. And when arc length was decreased from 3.8mm to 3.0mm, unmelted zone was decreased. It was concluded that the optimum condition to prevent melt through and to minimize unmelted zone would be with start block height 0.25mm, contact force 3.0kgf, and arc length 3.4mm. This optimum condition was applied to the mass production line and resulted in satisfied outcome.

Evaluation of Residual Stress on Pipe Welded Joints Using Laser Interferometry (레이저 간섭계를 이용한 배관 용접부 잔류응력 평가)

  • Chang, Ho-Seob;Na, Man-Gyun;Kim, Koung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.18-22
    • /
    • 2014
  • Residual stresses that occur during the welding process, are the main cause of failure and defects in welded structures. This paper, presents the use of an electronic processing laser speckle interferometer to measure the residual stress of a welded pipe for a nuclear power plant. A tensile testing machine was used to evaluate a welded pipe that failed in compression. The inform plane deformation and modulus of elasticity of the base metal and welds were measured using an interferometer. Varying the load on the welded pipe had a larger effect on the deformation of the base metal the other properties of the base metal and welds. The elastic moduli of the base metal and weld of the welded pipe were 202.46 and 212.14 GPa, respectively, the residual stress was measured to be 6.29 MPa.