• Title/Summary/Keyword: base-metal

Search Result 1,589, Processing Time 0.024 seconds

Influence of Welding Parameters on Macrostructure and Mechanical Properties of Friction-Stir-Spot-Welded 5454-O Aluminum Alloy Sheets (마찰교반점접합한 5454-O 알루미늄합금 판재의 접합부 거시조직 및 기계적 특성에 미치는 접합인자의 영향)

  • Choi, Won-Ho;Kwon, Yong-Jai;Yoon, Sung-Ook;Kang, Myoung-Soo;Lim, Chang-Yong;Seo, Jong-Dock;Hong, Sung-Tae;Park, Dong-Hwan;Lee, Kwang-Hak
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.56-64
    • /
    • 2011
  • Friction stir spot welding between 5454 aluminum alloy sheets with the different thicknesses of 1.4 and 1.0 mm was performed. In the welding process, the tool for welding was rotated ranging from 500 to 2500, and plunged to the depth of 1.8 mm under a constant tool plunge speed of 100 mm/min. And then, the rotating tool was maintained at the plunge depth during the dwell time ranging from 0 to 7 sec. The pull-out speed of the rotating tool was 100 mm/min. The increase of tool rotation speed resulted in the change of the macrostructure of friction-stir-spot-welded zone, especially the geometry of welding interface. The results of the tensile shear test showed that the total displacement and toughness of the welds were increased with the increase of the tool rotation speed, although the maximum tensile shear load was decreased. However, the change in the dwell time at the plunge depth of the tool did not produce the remarkable variation in the macrostructure and mechanical properties of the welds. In all cases, the average hardness in friction-stir-spot-welded zone was higher than that of the base metal zone. By the friction stir spot welding technique, the welds with the excellent mechanical properties than the mechanically-clinched joints could be obtained.

Generation Characteristics and Prediction of Acid Rock Drainage(ARD) of Cut Slopes (건설현장 절취사면의 산성암반배수 발생특성과 잠재적 산발생능력 평가)

  • Lee, Gyoo-Ho;Kim, Jae-Gon;Lee, Jin-Soo;Chon, Chul-Min;Park, Sam-Gyu;Kim, Tack-Hyun;Ko, Kyung-Seok;Kim, Tong-Kwon
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.91-99
    • /
    • 2005
  • Acid Rock Drainage(ARD) is the product formed by the atmospheric(i.e. by water, oxygen and carbon dioxide) oxidation of the relatively common iron-sulphur mineral pyrite($FeS_2$). ARD causes the acidification and heavy metal contamination of water and soil and the reduction of slope stability. In this paper the generation characteristics and the prediction of ARD of various cut slopes were studied. An attempt to classify the rocks into several groups according to their acid generation potentials was made. Acid Base Accounting(ABA) tests, commonly used as a screening tool in ARD predictions, were performed. Fourteen rock samples were classified into PAF(potentially acid forming) group and four rock samples into NAF(non-acid forming) group. The chemical analysis of water samples strongly suggested that ARD with high content of heavy metals and low pH could pollute the ground water and/or stream water.

Evaluation of Mechanical Properties of Extruded Magnesium Alloy Joints by Friction Stir Welding : Effect of Welding Tool Geometry (마찰교반용접 툴 변화에 따른 마그네슘 합금 압출 판재 마찰교반용접부 기계적 물성 평가)

  • Sun, Seung-Ju;Kim, Jung-Seok;Lee, Woo-Geun;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.280-288
    • /
    • 2016
  • This study proposes improved welding tools for magnesium alloys. Two types of tools were used for friction stir welding (FSW). The effect of the welding tools on the FSW joints was investigated with a fixed welding speed of 200mm/min and various rotation speeds of 400 to 800 rpm. After FSW, the joints were cross-sectioned perpendicular to the welding direction to investigate the defects. A tensile test and Vickers hardness test were conducted to identity the mechanical properties of the joints. Defects were observed when the rotation speed was 400 rpm, regardless of the welding tool, and the amount of defects tended to decrease with increases in rotational speed. Defect-free welds were obtained when the rotation speed was 800 rpm. The best weld quality was acquired using the C type welding tool. The rotation speed of 800 rpm and welding speed of 200 mm/min produced the best joining properties. The ultimate tensile strength, yield strength, and elongation of the welded region were 90.0%, 69.1%, and 83.2% those of the base metal, respectively.

Evaluation of Dose and Image Quality of Lens according to Baseline during Brain CT Scan (두부 전산화단층촬영 시 기준선에 따른 수정체 선량과 화질 평가)

  • Kim, Kyu-Hyung;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.699-704
    • /
    • 2019
  • It is important to minimize the exposure dose during an examination and obtain good quality images at the same time. This study compared the beam harding effect according to the baseline superior orbito meatal line(SOML), orbito meatal line(OML), inferior orbito metal line(OML) and measured the exposure dose of the lens, especially in brain CT examinations, which generally apply to head diease patients. The beam harding effect assessment of each image along the baseline was performed quantitatively using the Image J program, and the exposure dose of the lens was detected by OSLDs and compared. As a result, As a result, when the SOML was used as the reference line, the dose of the lens was decreased by 85.08% at 80 kV and by 79.7% at 80 kV, compared to when IOML was used as the baseline. If the gantry angle at brain CT was parallel scan to SOML, there were no significant differences in the exposure to the lens and between the OML and IOML. Therefore, this study has shown that it is efficient to have a parallel scan on SOML as a protocol during Brain CT examinations.

Evaluation of Mechanical Properties and Analysis of Microstructure of AZ61 Magnesium Alloy Butt Joints by Friction Stir Welding (AZ61 마그네슘 합금 마찰교반용접부의 기계적 특성 평가 및 미세조직 분석)

  • Sun, Seung-Ju;Kim, Jung-Seok;Lim, Jae-Yong;Lee, Woo-Geun;Go, Yo-Han;Kim, Young-Min;You, Bong-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.417-426
    • /
    • 2016
  • In this study, the optimal welding condition of an extruded AZ61 magnesium alloy plate was investigated through evaluation of the mechanical properties and microstructure in the friction stir welding zones. The friction stir welding conditions considered in this study were the tool rotation speeds of 400, 600, and 800rpm and the welding speeds of 200, 300, and 400mm/min. To evaluate the welding strength, tensile and hardness tests were carried out. Microstructures of the welded regions were examined using optical microscopes. Under a tool rotation speed of 800rpm and welding speed of 200mm/min, the joint showed the best joining properties. The UTS, yield strength, and elongation of the welded region showed values of 79.0%, 65.4%, and 30.1%, respectively, of those of the base metal.

The effect of plasma treatment to improve adhesion strength of parylene-C coated medical grade SUS304 (Parylene-C 코팅된 의료용 SUS304 소재의 결합력 향상을 위한 플라즈마 처리 효과)

  • Kim, Dong-Guk;Song, Tae-Ha;Jeong, Yong-Hoon;Kang, Kwan-Su;Yoon, Deok-kyu;Kim, Min-Uk;Woo, Young-Jae;Seo, Yo-Han;Kim, Kyung-Ah;Roh, Ji-hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.390-397
    • /
    • 2022
  • Parylene-C which was mainly used for industries such as electronics, machinery and semiconductors has recently been in the spotlight in the medical field due to its properties such as corrosion resistance and biocompatibility. In this study we intend to derive a plan to improve the bonding strength of Parylene-C coating with the SUS304 base material for medical use which can be applied to various medical fields such as needles, micro needles and in vitro diagnostic device sensors. Through plasma pretreatment the bonding strength between Parylene-C and metal materials was improved. It was confirmed that the coated surface was hydrophobic by measuring the contact angle and the improvement of the surface roughness of the sample manufactured through CNC machining was confirmed by measuring the surface roughness with SEM. Through the above results, it is thought that it will be effective in increasing usability and reducing pain in patients by minimizing friction when inserting medical devices and in contact with skin. In addition it can be applied to various application fields such as human implantable stents and catheters, and is expected to improve the performance and lifespan of medical parts.

Evaluation of 3D Printing Filaments for Radiation Shielding using High Density Polyethylene and Bismuth (고밀도 폴리에틸렌과 비스무트를 이용한 3D 프린팅용 방사선 복합필라멘트 개발 및 차폐능력 평가)

  • Park, Ki-Seok;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.233-240
    • /
    • 2022
  • Research on the presence or absence of radiation shielding for FDM-type filaments has recently begun to be studied, but filaments with shielding capabilities are not sold in Korea, and not studies yet. Therefore, in this research, we will use HDPE (High Density Polyethylene) as a base material, select bismuth as a reinforcing material to manufacture a composite filament, evaluate the shielding ability, and provide basic data for the development of a radiation shielding composite material using 3D printing.A filament is produced by mixing Bismuth with an effective atomic number 83 with HDPE of PE series and adjusting the content of Bismuth to 20% wt, 30% wt, 40% wt. Compounded filaments were evaluated for their physical properties and shielding capabilities by ASTM evaluation methods. As the bismuth content increases, the density, weight, and tensile strength increase, and the shielding capacity is confirmed to be excellent. As a result of the radiation shielding capacity evaluation, it was confirmed that HDPE (80%) + Bi (20%) showed a shielding rate of 82% at 60 kV and a shielding rate of up to 94% or more at 40% bismuth content. In this study, we confirmed that it was possible to produce a radiation shield that is lighter than the metal particle-containing filaments. Furthermore, that have been shield radiation by using HDPE + Bi filaments, and radiation in the medical and radiation industries. The possibility of using it as a shielding complex was confirmed.

Genetic Environments of Au-Ag-bearing Gasado Hydrothermal Vein Deposit (함 금-은 가사도 열수 맥상광상의 성인)

  • Ko, Youngjin;Kim, Chang Seong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.53-61
    • /
    • 2022
  • The Gasado Au-Ag deposit is located within the south-western margin of the Hanam-Jindo basin. The geology of the Gasado is composed of the late Cretaceous volcaniclastic sedimentary rocks and acidic or intermediate igneous rocks. Within the deposit area, there are a number of hydrothermal quartz and calcite veins, formed by narrow open space filling along subparallel fractures in the late Cretaceous volcaniclastic sedimentary rock. Vein mineralization at the Gasado is characterized by several textural varieties such as chalcedony, drusy, comb, bladed, crustiform and colloform. The textures have been used as exploring indicators of the epithermal deposit. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz veins; stage II, barren carbonate veins) considering major tectonic fracturing event. Stage I, at which the precipitation of Au-Ag bearing minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite and pyrrhotite with minor chalcopyrite, sphalerite and electrum; middle, characterized by introduction of electrum and base-metal sulfides with minor argentite; late, marked by argentite and native silver. Au-Ag-bearing mineralization at the Gasado deposit occurred under the condition between initial high temperatures (≥290℃) and later lower temperatures (≤130℃). Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur (≈10-10.1 to ≤10-18.5atm) by evolution of the Gasado hydrothermal system with increasing paragenetic time. The Gasado deposit may represents an epithermal gold-silver deposit which was formed near paleo-surface.

Genetic Environments at the Ssangjeon Tungsten-bearing Hydrothermal Vein Deposit (쌍전 함 텅스텐 열수 맥상광상의 생성환경)

  • Sunjin Lee;Sang-Hoon Choi
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.689-699
    • /
    • 2022
  • The Ssangjeon tungsten deposit is located within the Yeongnam Massif. Within the area a number of hydrothermal quartz veins were formed by narrow open-space filling of parallel and subparallel fractures in the metasedimentary rocks as Wonnam formation, Buncheon granite gneiss, amphibolite and/or pegmatite. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz vein; stage II, barren quartz vein) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of arsenopyrite with pyrite; middle, characterized by introduction of wolframite and scheelite with Ti-Fe-bearing oxides and base-metal sulfides; late, marked by Bi-sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥370℃) and later lower temperatures (≈170℃) from H2O-CO2-NaCl fluids with salinities between 18.5 to 0.2 equiv. wt. % NaCl of Ssangjeon hydrothermal system. The relationship between salinity and homogenization temperature indicates a complex history of boiling, fluid unmixing (CO2 effervescence), cooling and dilution via influx of cooler, more dilute meteoric waters over the temperature range ≥370℃ to ≈170℃. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Ssangjeon hydrothermal system with increasing paragenetic time.

Welding Bead Detection Inspection Using the Brightness Value of Vertical and Horizontal Direction (수직 및 수평 방향의 밝깃값을 이용한 용접 비드 검출 검사)

  • Jae Eun Lee;Jong-Nam Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.241-248
    • /
    • 2022
  • Shear Reinforcement of Dual Anchorage(SRD) is used to reinforce the safety of reinforced concrete structures at construction sites. Welding is used to make shear reinforcement, and welding plays an important role in determining productivity and competitiveness of products. Therefore, a weld bead detection inspection is required. In this paper, we suggest an algorithm for inspecting welding beads using image data of welding beads. First, the proposed algorithm calculates a brightness value in a vertical direction in an image, and then divides a welding bead in a vertical direction by finding a position corresponding to a 50% height point of the brightness value distribution in the image. The welding bead area is also divided in the same way for the horizontal direction, and then the segmentation image is analyzed if there is a welding bead. The proposed algorithm reduced the amount of computation by performing analysis after specifying the region of interest. In addition, accuracy could be improved by using all brightness values in the vertical and horizontal directions using the difference of brightness between the base metal and the welding bead region in the SRD image. The experiment compared the analysis results using five algorithms, such as K-mean and K-neighborhood, as a method to detect if there is a welding bead, and the experimental result proved that the proposed algorithm was the most accurate.