• Title/Summary/Keyword: base-isolated

Search Result 551, Processing Time 0.03 seconds

Evaluation of a new proposed seismic isolator for low rise masonry structures

  • Kakolvand, Habibollah;Ghazi, Mohammad;Mehrparvar, Behnam;Parvizi, Soroush
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.481-493
    • /
    • 2021
  • Low rise masonry structures are relatively inexpensive and easier to construct compared to other types of structures such as steel and reinforced concrete buildings. However, masonry structures are relatively heavier and less ductile and more vulnerable to damages in earthquakes. In this research, a new innovative low-cost seismic isolator using steel rings (SISR) is employed to reduce the seismic vulnerability of masonry structures. FEA of a masonry structure, made of concrete blocks is used to evaluate the effect of the proposed SISR on the seismic response of the structure. Two systems, fixed base and isolated from the base with the proposed SISRs, are considered. Micro-element approach and ABAQUS software are used for structural modeling. The nonlinear structural parameters of the SISRs, extracted from a recent experimental study by the authors, are used in numerical modeling. The masonry structure is studied in two separate modes, fixed base and isolated base with the proposed SISRs, under Erzincan and Imperial Valley-06 earthquakes. The accelerated response at the roof level, as well as the deformation in the masonry walls, are the parameters to assess the effect of the proposed SISRs. The results show a highly improved performance of the masonry structure with the SISRs.

Dynamic Stability Analysis of Base-Isolated Low-level Nonlinear Structure Under Earthquake Excitation (지진시 저층건물 면진구조의 비선형 동적 거동)

  • Mun, Byeong-Yeong;Gang, Gyeong-Ju;Gang, Beom-Su;Kim, Gye-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1743-1750
    • /
    • 2001
  • This paper presents an analysis of nonlinear response of the seismically isolated structure against earthquake excitation to evaluate isolation performances of a rubber bearing. In the analysis of the vibration of building, the building is modeled by lumped mass system where the restoring force is considered as linear, bilinear and trilinear. Fundamental equations of motion are derived for the base isolated structure, and hysteretic and nonlinear-elastic characteristics are considered for a numerical calculation. The excitation levels are magnified fur the recorded strong earthquake motions in order to examine dynamic stability of the structure. Seismic responses (of the building are compared fur the each restoring force type. As a result, it is shown that the effect of the motion by the nonlinear response of the building is comparatively not so large from a seismic design standpoint. The responses of the isolated structures reduce sufficiently and controled the motion of the building well in a practical range. By increasing the acceleration of the earthquake, the yielding of the farce was occurred in the concrete and steel frame, which shows the necessity of the exact nonlinear dynamic analysis.

Design of sliding-type base isolators by the concept of equivalent damping

  • Yang, Yeong-Bin;Chen, Yi-Chang
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.299-310
    • /
    • 1999
  • One problem with base isolators of the sliding type is that their dynamic responses are nonlinear, which cannot be solved in an easy manner, as distinction must be made between the sliding and non-sliding phases. The lack of a simple method for analyzing structures installed with base isolators is one of the obstacles encountered in application of these devices. As an initial effort toward simplification of the analysis procedure for base-isolated structures, an approach will be proposed in this paper for computing the equivalent damping for the resilient-friction base isolators (R-FBI), based on the condition that the sum of the least squares of errors of the linearized response with reference to the original nonlinear one is a minimum. With the aid of equivalent damping, the original nonlinear system can be replaced by a linear one, which can then be solved by methods readily available. In this paper, equivalent damping curves are established for all ranges of the parameters that characterize the R-FBI for some design spectra.

End-point control of a flexible arm under base fluctuation

  • Chonan, Seiji;Sato, Hidehiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.600-605
    • /
    • 1989
  • A theoretical study is presented for the end-point holding control of a one-link flexible arm, whose base is subjected to a lateral fluctuation. The arm is clamped on a rigid hub mounted directly on the shaft of d.c. servomoter. The tip position is measured by a gap sensor fixed in space isolated from the system vibration. The arm is controlled so as to make the end point stay precisely at its initial position even if the base is fluctuated.

  • PDF

Analyses of Vertical Seismic Responses of Seismically Isolated Nuclear Power Plant Structures Supported by Lead Rubber Bearings (납적층고무받침(LRB)으로 지지된 면진 원전 구조물의 수직방향 지진응답 분석)

  • Cho, Sung Gook;Yun, Sung Min;Kim, Dookie;Hoo, Kee Jeung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.133-143
    • /
    • 2015
  • It is very important to assure the seismic performance of equipment as well as building structures in seismic design of nuclear power plant(NPP). Seismically isolated structures may be reviewed mainly on the horizontal seismic responses. Considering the equipment installed in the NPP, the vertical earthquake responses of the structure also should be reviewed. This study has investigated the vertical seismic demand of seismically isolated structure by lead rubber bearings(LRBs). For the numerical evaluation of seismic demand of the base isolated NPP, the Korean standard nuclear power plant (APR1400) is modeled as 4 different models, which are supported by LRBs to have 4 different horizontal target periods. Two real earthquake records and artificially generated input motions have been used as inputs for earthquake analyses. For the study, the vertical floor response spectra(FRS) were generated at the major points of the structure. As a results, the vertical seismic responses of horizontally isolated structure have largely increased due to flexibility of elastomeric isolator. The vertical stiffness of the bearings are more carefully considered in the seismic design of the base-isolated NPPs which have the various equipment inside.

Exploring the effects of tuned mass dampers on the seismic performance of structures with nonlinear base isolation systems

  • Hessabi, Reza Mirza;Mercan, Oya;Ozturk, Baki
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.285-296
    • /
    • 2017
  • Base isolation is a quite practical control strategy for enhancing the response of structural systems induced by strong ground motions. Due to the dynamic effects of base isolation systems, reduction in the interstory drifts of the superstructure is often achieved at the expense of high base displacement level, which may lead to instability of the structure or non-practical designs for the base isolators. To reduce the base displacement, several hybrid structural control strategies have been studied over the past decades. This study investigates a particular strategy that employs Tuned Mass Dampers (TMDs) for improving the performance of base-isolated structures and unlike previous studies, specifically focuses on the effectiveness of this hybrid control strategy in structures that are equipped with nonlinear base isolation systems. To consider the nonlinearities of base isolation systems, a Bouc-Wen model is selected and nonlinear dynamic OpenSees models are used to perform several time-history simulations in time and frequency domains. Through these numerical simulations, the effects of several parameters such as the fundamental period of the structure, dynamic properties of the TMD and isolation systems and properties of the input ground motion on the behaviour of TMD-structure-base isolation systems are examined. The results of this study provide a better insight into the performance of linear shear-story structures with nonlinear base isolators and show that there are many scenarios in which TMDs can still improve the performance of these systems.

Effects of on-base and slugging ability on run productivity in Korean professional baseball (한국 프로야구에서 출루 능력과 장타력이 득점 생산성에 미치는 영향)

  • Kim, Hyuk Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1065-1074
    • /
    • 2012
  • The purpose of this paper is to statistically analyze the effects of on-base and slugging ability on the run productivity in Korean professional baseball. In Section 2, we have investigated the OPS (On-base percentage Plus Slugging average) and introduced new indices of batting ability by modifying the OPS. In Section 3, we have examined the correlation which the batting average, on-base percentage, slugging average, IsoP (Isolated Power), OPS and the indices introduced in Section 2 have with the average runs per game, using the data from all the games of the regular seasons in 2007~2011. In addition, by generalizing the OPS and the indices introduced in Section 2, we have analyzed the correlation of the indices with various weights between the average runs per game. As a result, the weighted OPS consisting of on-base percentage (with weight 57%) and slugging average (with weight 43%) has been found to give the best explanation of the run productivity.

Remote Parallel Pseudo-Dynamic Testings Using Internet on Base Isolated Bridge (인터넷을 이용한 원격병렬 유사동적실험 : 면진교량에 대하여)

  • 윤정방;김재민;김남식;심종민;구기영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.304-307
    • /
    • 2000
  • This paper presents a numerical simulation study for remote parallel pseudo-dynamic testings using Internet. In this testing method, experimental facilities located at different places can be parallelly used for testing a large-scale structure with many components subjected to severe nonlinear behavior. Example analysis is carried out on a base- isolated bridge for earthquake loading. The results indicate that the time required for data communication between two facilities located 250km apart through Internet for t 000 time steps is about 20 minutes, which is fairly equivalent to the time required for pseudo-dynamic testing. This testing method can be more powerful, as the data transmitting technique through Internet improves.

  • PDF

Isolation and sequence analysis of a small cryptic plasmid from Lactobacillus farciminis KCTC3681 (Lactobacillus farciminis로부터 미지의 작은 플라스미드의 분리와 염기서열 분석)

  • Lee, Eun-Mo;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.53-57
    • /
    • 2008
  • From the extensive screening for small cryptic plasmid among about 23 lactic acid bacteria (LAB), 2.4 kb of cryptic plasmid was isolated from Lactobacillus farciminis strain KCTC 3681 and named as pLF24. The plasmid pLF24 was a circular molecule of 2,396 base-pairs in length with a G+C content of 38%. Two protein-coding sequences could be predicted. ORF1 and ORF2 showed homologies to plasmids of gram-positive bacteria. The replication protein coded by ORF2 and the plus origin, were similar to replication regions of other gram-positive bacteria as shown in plasmids such as pLH2, pLS141-1 and pLC2. The nucleotide sequence of pLF24 was deposited into Genbank data base with an accession number of EU429343. The newly isolated plasmid can be used for construction of shuttle vector in Lactobacillus bacteria.

  • PDF

Performance assessment of buildings isolated with S-FBI system under near-fault earthquakes

  • Ozbulut, Osman E.;Silwal, Baikuntha
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.709-724
    • /
    • 2016
  • This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm to improve the performance of isolated buildings against near-fault earthquakes. The S-FBI system consists of a flat steel-PTFE sliding bearing and superelastic NiTi shape memory alloy (SMA) cables. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA cables provide restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm in order to optimize S-FBI system. Nonlinear time history analyses of the building with optimal S-FBI system are performed. A set of 20 near-fault ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.