• 제목/요약/키워드: base wind loading

검색결과 20건 처리시간 0.02초

Wind tunnel investigation of correlation and coherence of wind loading on generic tall twin buildings in close proximity

  • Lim, Juntack;Bienkiewicz, Bogusz
    • Wind and Structures
    • /
    • 제18권4호
    • /
    • pp.443-456
    • /
    • 2014
  • A popular modern architectural form for tall buildings is two (or more) towers which are structurally linked through such features as a shared podium or sky-bridges. The fundamental features of the wind loading and the structural links of such buildings can be studied by measuring load components on the individual unlinked towers along with their correlations. This paper describes application of dual high frequency force balance (DHFFB) in a wind tunnel study of the base wind loading exerted on generic tall twin buildings in close proximity. Light models of two identical generic tall buildings of square plan were mounted on DHFFB and the base wind loading exerted on the buildings was simultaneously acquired. The effects of the relative positions of the buildings on the correlations and coherences involving loading components on each building and on the two buildings were investigated. For some relative positions, the effects of the building proximity on the wind loading were significant and the loading was markedly different from that exerted on single buildings. In addition, the correlations between the loadings on the two buildings were high. These effects have potential to significantly impact, for example, the modally-coupled resonant responses of the buildings to the aerodynamic excitations. The presented results were not meant to be recommended for direct application in wind resistant design of tall twin buildings. They were intended to show that wind loading on tall buildings in close proximity is significantly different from that on single buildings and that it can be conveniently mapped using DHFFB.

Wind-induced fatigue loading of tubular steel lighting columns

  • Robertson, A.P.;Hoxey, R.P.;Short, J.L.;Burgess, L.R.;Smith, B.W.;Ko, R.H.Y.
    • Wind and Structures
    • /
    • 제4권2호
    • /
    • pp.163-176
    • /
    • 2001
  • Two 12 m high tubular steel lighting columns have been instrumented to determine the wind-induced fatigue loading experienced by such columns. Each column supported a single luminaire mounted on a 0.5 m long bracket. One column was planted in soil, and the other bolted through a welded baseplate to a substantial concrete base. The columns were strain gauged just above the shoulder weld which connected the main shaft to the larger base tube. Forced vibration tests were undertaken to determine the natural frequencies and damping of the columns. Extensive recordings were made of response to winds with speeds from 4 m/s to 17 m/s. Selected records were analysed to obtain stress cycle counts and fatigue lives. Mean drag coefficients were also derived from the strain data to investigate experimentally the effect of Reynolds Number.

Capacity of a transmission tower under downburst wind loading

  • Mara, T.G.;Hong, H.P.;Lee, C.S.;Ho, T.C.E.
    • Wind and Structures
    • /
    • 제22권1호
    • /
    • pp.65-87
    • /
    • 2016
  • The wind velocity profile over the height of a structure in high intensity wind (HIW) events, such as downbursts, differs from that associated with atmospheric boundary layer (ABL) winds. Current design codes for lattice transmission structures contain only limited advice on the treatment of HIW effects, and structural design is carried out using wind load profiles and response factors derived for ABL winds. The present study assesses the load-deformation curve (capacity curve) of a transmission tower under modeled downburst wind loading, and compares it with that obtained for an ABL wind loading profile. The analysis considers nonlinear inelastic response under simulated downburst wind fields. The capacity curve is represented using the relationship between the base shear and the maximum tip displacement. The results indicate that the capacity curve remains relatively consistent between different downburst scenarios and an ABL loading profile. The use of the capacity curve avoids the difficulty associated with defining a reference wind speed and corresponding wind profile that are adequate and applicable for downburst and ABL winds, thereby allowing a direct comparison of response under synoptic and downburst events. Uncertainty propagation analysis is carried out to evaluate the tower capacity by considering the uncertainty in material properties and geometric variables. The results indicated the coefficient of variation of the tower capacity is small compared to those associated with extreme wind speeds.

International high-frequency base balance benchmark study

  • Holmes, John D.;Tse, Tim K.T.
    • Wind and Structures
    • /
    • 제18권4호
    • /
    • pp.457-471
    • /
    • 2014
  • A summary of the main results from an international comparative study for the high-frequency base balance is given. Two buildings were specified - a 'basic' and an 'advanced' building. The latter had more complex dynamic response with coupled modes of vibration. The predicted base moments generally showed good agreement amongst the participating groups, but less good agreement was found for the roof accelerations which are dominated by the resonant response, and subject to measurement errors for the generalized force spectra, to varying mode shape correction techniques, and different methods used for combining acceleration components.

부유식 다수 풍력 발전기에 작용하는 비대칭 공력 하중의 영향 (Influence of Asymmetric Aerodynamic Loading on Multiple Unit Floating Offshore Wind Turbine)

  • 배윤혁
    • 한국해양공학회지
    • /
    • 제29권3호
    • /
    • pp.255-262
    • /
    • 2015
  • The present study developed a numerical simulation tool for the coupled dynamic analysis of multiple turbines on a single floater (or Multiple Unit Floating Offshore Wind Turbine (MUFOWT)) in the time domain, considering the multiple-turbine aero-blade-tower dynamics and control, mooring dynamics, and platform motions. The numerical tool developed in this study was designed based on and extended from the single-turbine analysis tool FAST to make it suitable for multiple turbines. For the hydrodynamic loadings of floating platform and mooring-line dynamics, the CHARM3D program developed by the authors was incorporated. Thus, the coupled dynamic behavior of a floating base with multiple turbines and mooring lines can be simulated in the time domain. To investigate the effect of asymmetric aerodynamic loading on the global performance and mooring line tensions of the MUFOWT, one turbine failure case with a fully feathered blade pitch angle was simulated and checked. The aerodynamic interference between adjacent turbines, including the wake effect, was not considered in this study to more clearly demonstrate the influence of the asymmetric aerodynamic loading on the MUFOWT. The analysis shows that the unbalanced aerodynamic loading from one turbine in MUFOWT may induce appreciable changes in the performance of the floating platform and mooring system.

Wind loading on trees integrated with a building envelope

  • Aly, Aly Mousaad;Fossati, Fabio;Muggiasca, Sara;Argentini, Tommaso;Bitsuamlak, Girma;Franchi, Alberto;Longarini, Nicola;Crespi, Pietro;Chowdhury, Arindam Gan
    • Wind and Structures
    • /
    • 제17권1호
    • /
    • pp.69-85
    • /
    • 2013
  • With the sustainability movement, vegetated building envelopes are gaining more popularity. This requires special wind effect investigations, both from sustainability and resiliency perspectives. The current paper focuses on wind load estimation on small- and full-scale trees used as part of green roofs and balconies. Small-scale wind load assessment was carried out using a wind tunnel testing in a global-effect study to understand the interference effects from surrounding structures. Full-scale trees were investigated at a large open-jet facility in a local-effect study to account for the wind-tree interaction. The effect of Reynolds number combined with shape change on the overall loads measured at the base of the trees (near the roots) has been investigated by testing at different model-scales and wind speeds. In addition, high-speed tests were conducted to examine the security of the trees in soil and to assess the effectiveness of a proposed structural mitigation system. Results of the current research show that at relatively high wind speeds the load coefficients tend to be reduced, limiting the wind loads on trees. No resonance or vortex shedding was visually observed.

A nondestructive method for controlling wind loads and wind-induced responses of wooden pagoda

  • LI, Yuhang;DENG, Yang;LI, Aiqun
    • Wind and Structures
    • /
    • 제34권6호
    • /
    • pp.525-538
    • /
    • 2022
  • High-rise wooden pagodas generate large displacement responses under wind action. It is necessary and wise to reduce the wind loads and wind-induced responses on the architectural heritage using artificial plants, which do not damage ancient architecture and increase greenery. This study calculates and analyzes the wind loads and wind-induced responses on the Yingxian Wooden Pagoda, in China, using artificial plants via the finite element analysis (FEA). A three-dimensional wind-loading field was simulated using a wind tunnel test. Wind loads and wind-induced responses, including the displacement and acceleration of the pagoda with and without artificial plants, were analyzed. In addition, three types of tree arrangements were discussed and analyzed using the score method. The results revealed that artificial plants can effectively control wind loads and wind-induced displacements, but the wind-induced accelerations are enlarged to some extent during the process. The height of the tree significantly affected the shelter effects of the structure. The distance of trees from the pagoda and arrangement width of the tree had less influence on shelter effects. This study extends the understanding of the nondestructive method based on artificial plants, for controlling the wind base loads and structural responses of wooden pagodas and preserving architectural heritage via FEA.

하이브리드 해상풍력발전 지지구조물의 콘크리트 베이스-슬리브 연결부에 대한 실험 연구 (Experimental Study for Concrete Base to Sleeve connection of Hybrid Substructure for Offshore Wind Turbine)

  • 이정화;변남주;김성환;박재현;강영종
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.79-87
    • /
    • 2016
  • 본 논문에서는 하이브리드 해상풍력발전 지지구조물의 콘크리트베이스와 파일기초를 연결하는 베이스-슬리브 연결부를 제시하고 이를 실험적으로 검증하였다. 베이스-슬리브 연결부의 펀칭 전단 강도와 구조거동을 분석을 위하여, 철근비와 하중조건을 변수로 하는 3개의 연결부 실험체에 대하여 펀칭전단실험이 실시하였다. 실험 결과, 베이스-슬리브 연결부의 펀칭전단강도와 강성은 베이스의 철근비에 주로 영향을 받는 것으로 나타났다. 축력과 모멘트가 동시에 작용되는 하중 조건은 연결부의 강성에는 영향을 미치지 않으나 축력-모멘트 상호작용에 의하여 강도에 영향을 미치는 것으로 나타났다. 또한, 각 실험체의 파괴거동과 펀칭전단의 위험단면에 대해 검토되었다.

Wind resistance performance of a continuous welding stainless steel roof under static ultimate wind loading with testing and simulation methods

  • Wang, Dayang;Zhao, Zhendong;Ou, Tong;Xin, Zhiyong;Wang, Mingming;Zhang, Yongshan
    • Wind and Structures
    • /
    • 제32권1호
    • /
    • pp.55-69
    • /
    • 2021
  • Ultrapure ferritic stainless steel provides a new generation of long-span metal roof systems with continuous welding technology, which exhibits many unknown behaviors during wind excitation. This study focuses on the wind-resistant capacity of a new continuous welding stainless steel roof (CWSSR) system. Full-scale testing on the welding joints and the CWSSR system is performed under uniaxial tension and static ultimate wind uplift loadings, respectively. A finite element model is developed with mesh refinement optimization and is further validated with the testing results, which provides a reliable way of investigating the parameter effect on the wind-induced structural responses, namely, the width and thickness of the roof sheeting and welding height. Research results show that the CWSSR system has predominant wind-resistant performance and can bear an ultimate wind uplift loading of 10.4 kPa without observable failures. The welding joints achieve equivalent mechanical behaviors as those of base material is produced with the current of 65 A. Independent structural responses can be found for the roof sheeting of the CWSSR system, and the maximum displacement appears at the middle of the roof sheeting, while the maximum stress appears at the connection supports between the roof sheeting with a significant stress concentration effect. The responses of the CWSSR system are greatly influenced by the width and thickness of the roof sheeting but are less influenced by the welding height.

Field measurements of wind-induced transmission tower foundation loads

  • Savory, E.;Parke, G.A.R.;Disney, P.;Toy, N.;Zeinoddini, M.
    • Wind and Structures
    • /
    • 제1권2호
    • /
    • pp.183-199
    • /
    • 1998
  • This paper discusses some of the findings arising from long-term monitoring of the wind effects on a transmission tower located on an exposed site in South-West England. Site wind speeds have been measured, together with the foundation loads at the base of each of the four legs. The results show good correlation between the wind speeds and leg strains (loads) for a given wind direction, as expected, for wind speeds in excess of 10 m/s. Comparisons between the measured strains and those determined from the UK Code of Practice for lattice towers (BS8100), for the same wind speed and direction, show that the Code over-estimates most of the measured foundation loads by a moderate amount of about 14% at the higher wind speeds. This tends to confirm the validity of the Code for assessing design foundation loads. A finite element analysis model has been used to examine the dynamic behaviour of the tower and conductor system. This shows that, in the absence of the conductor, the tower alone has similar natural frequencies of approximately 2.2 Hz in the both the first (transversal) and second (longitudinal) modes, whilst for the complete system and conductor oscillations dominate, giving similar frequencies of approximately 0.1 Hz for both the first and second modes.