• Title/Summary/Keyword: base material gap

Search Result 46, Processing Time 0.02 seconds

The Weldability of Primer-coated Steel for Shipbuilding by $CO_2$ Laser (조선용 Primer코팅강판의 $CO_2$레이저 용접성)

  • Park, Hyun-Joon;Kim, Jong-Do;Kim, Young-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.316-321
    • /
    • 2003
  • The spatter and porosity could be occurred during $CO_2$ CW laser welding of Primer-coated Steel for Shipbuilding. This study has suggested an alternative idea by examining of weld-defect formation mechanism. The primer-coated plate has caused the spatter, humping bead and porosity and these are main part of the welding defect, attributed to the powerful vaporizing pressure of primer attached on the base metal. The zinc of primer has a boiling point that is the lower temperature than melting point of steel. Zinc va}X)f will build up at the interface between the two sheets and this tends to deteriorate the quality of the weld by ejecting weld material from lap position or leaving porosity. Therefore introducing a small gap clearance in the lap position, the zinc vapor could escape through it and sound weld beads can be acquired. In conclusion, we suggested the occurred and prevented mechanism of weld defects with searching the factor.

  • PDF

Runout Control of a Magnetically Suspended High Speed Spindle Using Adaptive Feedforward Method (적응 Feedforward를 이용한 자기베어링 고속 주축계의 전기적 런아웃 제어)

  • 노승국;경진호;박종권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.57-63
    • /
    • 2002
  • In this paper, the feedforward control with least mean square (LMS) adaptive algorithm is proposed and examined to reduce rotating error by runout of an active magnetic bearing system. Using eddy-current type gap sensor fur control, the electrical runout caused by non-uniform material properties of sensor target produces rotational error amplified in feedback control loop, so this runout should be eliminated to increase rotating accuracy. The adaptive feedforward controller is designed and examined its tracking and stability performances numerically with established frequency response function. The tested grinding spindle system is manufactured with a 5.5 ㎾ internal motor and 5-axis active magnetic bearing system including 5 eddy current gap sensors which have approximately 15 ~ 30 ${\mu}{\textrm}{m}$ of electrical runout. According to the experimental analysis, the error signal in radial bearings is reduced to less than 5 ${\mu}{\textrm}{m}$ when it is rotating up to 50,000 rpm due to applying the feedforward control for first order harmonic frequency, and vibration of the spindle base is also reduced about same frequency.

Computer modeling of elastoplastic stress state of fibrous composites with hole

  • Polatov, Askhad M.;Ikramov, Akhmat M.;Khaldjigitov, Abduvali A.
    • Coupled systems mechanics
    • /
    • v.8 no.4
    • /
    • pp.299-313
    • /
    • 2019
  • The paper represents computer modeling of the deformed state of physically nonlinear transversally isotropic bodies with hole. In order to describe the anisotropy of the mechanical properties of transversally-isotropic materials a structurally phenomenological model has been used. This model allows representing the initial material in the form of the coupled isotropic materials: the basic material (binder) considered from the positions of continuum mechanics and the fiber material oriented along the anisotropy direction of the original material. It is assumed that the fibers perceive only the axial tensile-compression forces and are deformed together with the base material. To solve the problems of the theory of plasticity, simplified theories of small elastoplastic deformation have been used for a transversely-isotropic body, developed by B.E. Pobedrya. A simplified theory allows applying the theory of small elastoplastic deformations to solve specific applied problems, since in this case the fibrous medium is replaced by an equivalent transversely isotropic medium with effective mechanical parameters. The essence of simplification is that with simple stretching of composite in direction of the transversal isotropy axis and in direction perpendicular to it, plastic deformations do not arise. As a result, the intensity of stresses and deformations both along the principal axis of the transversal isotropy and along the perpendicular plane of isotropy is determined separately. The representation of the fibrous composite in the form of a homogeneous anisotropic material with effective mechanical parameters allows for a sufficiently accurate calculation of stresses and strains. The calculation is carried out under different loading conditions, keeping in mind that both sizes characterizing the fibrous material fiber thickness and the gap between the fibers-are several orders smaller than the radius of the hole. Based on the simplified theory and the finite element method, a computer model of nonlinear deformation of fibrous composites is constructed. For carrying out computational experiments, a specialized software package was developed. The effect of hole configuration on the distribution of deformation and stress fields in the vicinity of concentrators was investigated.

Surface Modification Method of Stainless Steel using Electrochemical Etching (전기화학적 에칭을 이용한 스테인리스 스틸의 표면 개질)

  • Lee, Chan;Kim, Joonwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.4
    • /
    • pp.353-358
    • /
    • 2014
  • This paper reports a simple, yet effective 1-step surface modification method for stainless steel. Electrochemical etching in dilute Aqua Regia forms hierarchical micro and nanoscale structure on the surface. The surface becomes highly hydrophobic (${\sim}150^{\circ}$) as a result of the etching in terms of static contact angle (CA). However the liquid drops easily pinned on the surface because of high contact angle hysteresis (CAH), which is called a "petal effect": The petal effect occur because of gap between surface microstructures, despite of intrinsic hydrophobicity of the base material. The pore size and period of surface structure can be controlled by applied voltage during the etching. This method can be applied to wide variety of industrial demand for surface modification, while maintaining the advantageous anti-corrosion property of stainless steel.

Dynamic Characteristics Analysis of Claw Pole PM Type Step Motor (Claw Pole 영구자석형 스텝모터의 동특성 해석)

  • Gong, Jeong-Sik;Kim, Jong-Cheol;O, Cheol-Su
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.597-603
    • /
    • 1999
  • Due to its simple construction, operation steadiness and low cost, claw pole step motor is widely used for OA machine and automobile. This paper deals with analysis fo claw pole motor, especially eyeing to dynamic characteristics. To analyze dynamic characteristics of claw pole step motor, torque development in each angular step of rotor are surveyed and torque equation is drived using permeance method. To adopt the airgap MMF, the magnetic equivalent circuit of the motor is introduced. On the base of the magnetic equivalent circuit, the air gap flux equation is derived. To get a optimum design of the motor, the torque characteristic is studied in variation of coil data and remanence value of permanent magnetic material.

  • PDF

The Coating Materials of Electrode Materials on Machinability of W-EDM (와이어전극의 도금재료가 W-EDM 가공성에 미치는 영향)

  • 김창호;허관도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.735-738
    • /
    • 2000
  • The characteristics of wire electrical discharge machining (WEDM) are governed by many factors such as the power supply type, operating condition and electrode material. This work deals with the effect of wire electrode materials on the machining characteristics such as, metal removal rate, surface characteristics and surface roughness during WEDM A wire's thermal physical properties are melting point, electrical conductivity and vapor pressure. One of the desired qualities of wire is a low melting point and high vapor pressure to help expel the contaminants from the gap. They are determined by the mix of alloying elements (in the case of plain brass and coated wire) or the base core material(i.e. molybdenum). Experiments have been conducted regarding the choice of suitable wire electrode materials and influence of the properties of these materials on the machinability and surface characteristics in WEDM, the experimental results are presented and discussed from their metallurgical aspect. And the coating effect of various alloying elements(Au, Ag, Cu, Zn, Cr, Mn, etc.) to the Cu or 65-35 brass core on them was reviewed also. The removal rate of some coated wires are higher than that of 65-35 brass electrode wire because the wire is difficult to break due to the wire cooling effect of Zn evaporation latent heat and the Zn oxide on the surface is effective in preventing short circuit. The removal rate increases with increasing Zn content from 35, 40 and Zn coated wire

  • PDF

A Study on the Si-SiO$_2$Interface State Characteristics of Nonvolatile SNOS FET Memories using The Charge Pumping Method (Charge Pumping 방법을 이용한 비휘발성 SNOS FET기억소자의 Si-SiO$_2$계면상태 특성에 관한 연구)

  • 조성두;이상배;문동찬;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.82-85
    • /
    • 1992
  • In this study, charge pumping method was used to investigate the Si-SiO$_2$interface characteristics of the nonvolatile SNOSFET memory devices, fabricated using the CMOS 1 Mbit processes (1.2$\mu\textrm{m}$ design rule), with thin oxide layer of 30${\AA}$ thick and nitride layer of 525${\AA}$ thick on the n-type silicon substrate (p-channel). Charge pumping current characteristics with the pulse base level were measured for various frequencies, falling times and rising times. By means of the charge dynamics in a non-steady state, the average Si-SiO$_2$interface state density and capture cross section were determined to be 3.565${\times}$10$\^$11/cm$\^$-2/eV$\^$-1/ and 4.834${\times}$10$\^$-16/$\textrm{cm}^2$, respectively. However Si-SiO$_2$ interface state densities were disributed 2.8${\times}$10$\^$-11/~5.6${\times}$10$\^$11/cm$\^$-2/~6${\times}$10$\^$11/cm$\^$-2/eV$\^$-1/ in the lover half of energy gap.

  • PDF

Development of Dielectric Constant Sensor for Measurementof Lubricant Properties (윤활유 물성 측정을 위한 유전상수 센서 개발)

  • Hong, Sung-Ho;Kang, Moon-Sik
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.203-207
    • /
    • 2021
  • This study presents the development of dielectric constant sensors to measure lubricant properties. The lubricant oil sensor is used to measure oil properties and machine conditions. Various condition monitoring methods are applied to diagnose machine conditions. Machine condition monitoring using oil sensors has advantage over other machine condition monitoring methods. The fault conditions can be noticed at the early stages by the detection of wear particles using oil sensors. Therefore, it provides an early warning in the failure procedure. A variety of oil sensors are applied to check the machine condition. Among all oil sensors, only one sensor can measure the tendency of several properties such as acidity and water content. A dielectric constant sensor is also used to measure various oil properties; therefore, it is very useful. The dielectric constant is the ratio of the capacitance of a capacitor using that material as a dielectric to that of a similar capacitor using vacuum as its dielectric. The dielectric constant has an effect on water content, contaminants, base oil, additive, and so forth. In this study, the dielectric constant sensor is fabricated using MEMS process. In the fabrication process, the shape, gap of the electrode array, and thickness of the insulation material are considered to improve the sensitivity of the sensor.

MARGINAL ADAPTATION OF STAINLESS STEEL IN POSTERIOR PRIMARY TOOTH (유구치 기성 금관의 변연 적합도에 관한 연구)

  • Woo, Jue-Hyung;Jang, Chul-Ho;Kim, Jung-Wook;Jang, Ki-Taeg;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.27-35
    • /
    • 2007
  • Stainless steel crowns are invaluable restorative material for the treatment of badly broken down primary teeth in pediatric dentistry. But it is difficult to fit margin because selection of size is not easy and they are not adjusted for Korean children. The purpose of this study was to examine and analyze the marginal adaptation of stainless steel crown of posterior primary tooth. Marginal surface was taken by Fine Pix S602 digital camera and measurements of crown were recorded at 20 points that were randomly selected for marginal gap evaluation by Kappa image base program. 1. Mean marginal gap were large upper 2nd primary molar, lower 1st primary molar, lower 2nd primary molar, upper 1st primary molar in order(p<0.05). 2. Mean marginal surface dimension ratio was more than 20% irrespective of tooth. 3. Largest amount of marginal gap was shown at mesial surface in upper 1st, 2nd primary molar and distolingual surface in lower 1st primary molar, buccal surface in lower 2nd primary molar.

  • PDF

Local oxidation of 4H-SiC using an atomic force microscopy (Atomic Force Microscopy을 이용한 4H-SiC의 Local Oxidation)

  • Jo, Yeong-Deuk;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.79-80
    • /
    • 2009
  • The local oxidation using an atomic force microscopy (AFM) is useful for Si-base fabrication of nanoscale structures and devices. SiC is a wide band-gap material that has advantages such as high-power, high-temperature and high-frequency in applications, and among several SiC poly types, 4H-SiC is the most attractive poly type due to the high electron mobility. However, the AFM local oxidation of 4H-SiC for fabrication is still difficult, mainly due to the physical hardness and chemical inactivity of SiC. In this paper, we investigated the local oxidation of 4H-SiC surface using an AFM. We fabricated oxide patterns using a contact mode AFM with a Pt/Ir-coated Si tip (N-type, $0.01{\sim}0.025\;{\Omega}cm$) at room temperature, and the relative humidity ranged from 40 to 50%. The height of the fabricated oxide pattern ($1{\sim}3\;nm$) on SiC is similar to that of typically obtained on Si ($10^{15}{\sim}10^{17}\;cm^{-3}$). We perform the 2-D simulation to further analyze the electric field between the tip and the surface. Whereas the simulated electric field on Si surface is constant ($5\;{\times}\;10^7\;V/m$), the electric field on SiC surface increases with increasing the doping concentration from ${\sim}10^{15}$ to ${\sim}10^{17}\;cm^{-3}$. We demonstrated that a specific electric field ($4\;{\times}\;10^7\;V/m$) and a doping concentration (${\sim}10^{17}\;cm^{-3}$) is sufficient to switch on/off the growth of the local oxide on SiC.

  • PDF