• Title/Summary/Keyword: base isolators

Search Result 91, Processing Time 0.022 seconds

Design of sliding-type base isolators by the concept of equivalent damping

  • Yang, Yeong-Bin;Chen, Yi-Chang
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.299-310
    • /
    • 1999
  • One problem with base isolators of the sliding type is that their dynamic responses are nonlinear, which cannot be solved in an easy manner, as distinction must be made between the sliding and non-sliding phases. The lack of a simple method for analyzing structures installed with base isolators is one of the obstacles encountered in application of these devices. As an initial effort toward simplification of the analysis procedure for base-isolated structures, an approach will be proposed in this paper for computing the equivalent damping for the resilient-friction base isolators (R-FBI), based on the condition that the sum of the least squares of errors of the linearized response with reference to the original nonlinear one is a minimum. With the aid of equivalent damping, the original nonlinear system can be replaced by a linear one, which can then be solved by methods readily available. In this paper, equivalent damping curves are established for all ranges of the parameters that characterize the R-FBI for some design spectra.

Shaking Table Tests of a 1/4-Scaled Steel Frame with Base Isolators (1/4축소 철골구조물을 이용한 건물 기초분리장치의 진동대실험)

  • 송영훈;김진구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.39-48
    • /
    • 1997
  • New form of base isolators made of steel spring coated with both natural and artficial rubber were manufactured and tested for material properties. Shaking table experiments were performed using a model structure attached with the bearings. The model structure used in the test is a 1/4 scaled steel structure, and earthquake records were used to check the lateral and vertical stability and effectiveness of the isolators. According to the results all three types of isolators turned out to be effective in reducing the acceleration induced by the earthquake vibration.

  • PDF

Seismic responses of base-isolated nuclear power plant structures considering spatially varying ground motions

  • Sayed, Mohamed A.;Go, Sunghyuk;Cho, Sung Gook;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.169-188
    • /
    • 2015
  • This study presents the effects of the spatial variation of ground motions in a hard rock site on the seismic responses of a base-isolated nuclear power plant (BI-NPP). Three structural models were studied for the BI-NPP supported by different number of lead rubber bearing (LRB) base isolators with different base mat dimensions. The seismic responses of the BI-NPP were analyzed and investigated under the uniform and spatial varying excitation of El Centro ground motion. In addition, the rotational degrees of freedom (DOFs) of the base mat nodes were taken to consider the flexural behavior of the base mat on the seismic responses under both uniform and spatial varying excitation. Finally, the seismic response results for all the analysis cases of the BI-NPP were investigated in terms of the vibration periods and mode shapes, lateral displacements, and base shear forces. The analysis results indicate that: (1) considering the flexural behavior of the base mat has a negligible effect on the lateral displacements of base isolators regardless of the number of the isolators or the type of excitation used; (2) considering the spatial variation of ground motions has a substantial influence on the lateral displacements of base isolators and the NPP stick model; (3) the ground motion spatial variation effect is more prominent on lateral displacements than base shear forces, particularly with increasing numbers of base isolators and neglecting flexural behavior of the base mat.

The effects of peak ground velocity of near-field ground motions on the seismic responses of base-isolated structures mounted on friction bearings

  • Tajammolian, H.;Khoshnoudian, F.;Talaei, S.;Loghman, V.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1259-1281
    • /
    • 2014
  • This research has been conducted in order to investigate the effects of peak ground velocity (PGV) of near-field earthquakes on base-isolated structures mounted on Single Friction Pendulum (SFP), Double Concave Friction Pendulum (DCFP) and Triple Concave Friction Pendulum (TCFP) bearings. Seismic responses of base-isolated structures subjected to simplified near field pulses including the forward directivity and the fling step pulses are considered in this study. Behaviour of a two dimensional single story structure mounting on SFP, DCFP and TCFP isolators investigated employing a variety range of isolators and the velocity (PGV) of the forward directivity and the fling step pulses as the main variables of the near field earthquakes. The maximum isolator displacement and base shear are selected as main seismic responses. Peak seismic responses of different isolator types are compared to emphasize the efficiency of each one under near field earthquakes. It is demonstrated that rising the PGVs increases the isolator displacement and base shear of structure. The effects of the forward directivity are greater than the fling step pulses. Furthermore, TCFP isolator is more effective to control the near field effects than the other friction pendulum isolators are. This efficiency is more significant in pulses with longer period and greater PGVs.

Dynamic Analysis of Base-Isolated Rectangular Liquid Storage Structures (기초격리된 직사각형 유체 저장 구조물의 동적 해석)

  • Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.109-116
    • /
    • 2004
  • The dynamic behavior of the rectangular liquid storage structure is known to be greatly influenced by fluid-structure interaction. By mounting the liquid storage structure on the properly designed base isolators, dynamic response of the superstructure can be reduced. However, base isolators inevitably incur large displacement of the structure to the ground ·ind may give adverse effects on the sloshing height. This paper presents the analysis method for fluid-structure-isolator interaction in base-isolated rectangular liquid storage structures. In the method, the irrotational motion of invicid and incompressible ideal fluid is expressed by analytic solutions and the superstructure and isolators are properly modeled by finite element and bilinear model. Free surface sloshing motion, hydrodynamic pressure acting on the wall and structural response are obtained by the presented method.

Comparison of seismic behavior of long period SDOF systems mounted on friction isolators under near-field earthquakes

  • Loghman, Vahid;Khoshnoudian, Faramarz
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.701-723
    • /
    • 2015
  • Friction isolators are one of the most important types of bearings used to mitigate damages of earthquakes. The adaptive behavior of these isolators allows them to achieve multiple levels of performances and predictable seismic behavior during different earthquake hazard levels. There are three main types of friction isolators. The first generation with one sliding surface is known as Friction Pendulum System (FPS) isolators. The double concave friction pendulum (DCFP) with two sliding surfaces is an advanced form of FPS, and the third one, with fully adaptive behavior, is named as triple concave friction pendulum (TCFP). The current study has been conducted to investigate and compare seismic responses of these three types of isolators. The structure is idealized as a two-dimensional single degree of freedom (SDOF) resting on isolators. The coupled differential equations of motion are derived and solved using state space formulation. Seismic responses of isolated structures using each one of these isolators are investigated under seven near fault earthquake motions. The peak values of bearing displacement and base shear are studied employing the variation of essential parameters such as superstructure period, effective isolation period and effective damping of isolator. The results demonstrate a more efficient seismic behavior of TCFP isolator comparing to the other types of isolators. This efficiency depends on the selected effective isolation period as well as effective isolation damping. The investigation shows that increasing the effective isolation period or decreasing the effective isolation damping improves the seismic behavior of TCFP compared to the other isolators. The maximum difference in seismic responses, the base shear and the bearing displacement, for the TCFP isolator are calculated 26.8 and 13.4 percent less than the DCFP and FPS in effective isolation damping equal to10%, respectively.

Optimum Design of Base Isolators Using Bouc-Wen Model (Bouc-Wen 모델을 이용한 면진장치의 최적설계)

  • 문석준;정정훈;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.395-402
    • /
    • 2003
  • Characteristics of base isolators including frictional and hysteretic types may be described by Bouc-Wen model. A probabilistic optimum design method of the base isolation system using Bouc-Wen model is presented in this paper. For optimum design, the objective function and constraints are derived based on the stochastic responses of the system. As a numerical example, the optimum design problem of a three-story base isolated shear type structure is formulated and solved by the sequential quadratic programming method.

  • PDF

Cyclic behavior of DCFP isolators with elliptical surfaces and different frictions

  • Abdollahzadeh, Gholamreza;Darvishi, Reza
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.731-736
    • /
    • 2017
  • Friction Pendulum isolators are tools developed in the past few decades. The simplest form of these isolators, are FPS whose main disadvantages are having a constant frequency independent of the frequency of the structure. For this reason, researchers have invented VFPI isolator whose frequency is variable and depends on displacement. Another friction pendulum isolator is DCFP isolator which is a combination of two FPS isolators. In this article, first by changing the geometry of DCFP isolator plates from spherical to elliptical, the motion and frequency equations of DVFPI isolators are defined, and then the seismic behavior of DVFPI isolators are analyzed in various geometric and plate friction settings using motion equations, and confirmed using ABAQUS software. The most important results of this study are that the hysteresis behavior of DVFPI isolators are severely nonlinear, its curve follows two distinct curvatures, and that the restoring force is faced with softening mechanism that limits the seismic force transmitted to the structure, whereas the restoring force in DCFP isolators increases linearly with increasing displacement.

Comparison of Seismic Retrofit Efficiencies of Base Isolation Systems for Existing Bridges

  • 조효남;엄원석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.81-86
    • /
    • 2000
  • In recent modern protective systems have been introduced to reduce the vulnerability of bridges to seismic events. These protective systems include base isolation devices of different types, damping devices and active control devices. The objective of this study is to analytically evaluate the efficiency of a seismic retrofit scheme using base isolation systems, such as lead rubber bearings and sliding isolators. In this study, a triaxial model was used, which is capable of accurately developing the behavior of sliding isolators including the influence of the changing vertical force and velocity on the friction coefficients. Seismic response analyses of the bridge before and after retrofit were carried out by using a three-dimensional nonlinear seismic analysis program, IDARC-BRIDGE. To evaluate the efficiency of a retrofit scheme using triaxial isolators, a comparative study of performances of above two base isolation systems was conducted, and the numerical results show that the triaxial isolation solution can effectively reduce the sheat forces at the piers for the vertical ground motion.

  • PDF

Effect of base isolation on the seismic response of multi-column bridges

  • Saiidi, M.;Maragakis, E.;Griffin, G.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.4
    • /
    • pp.411-419
    • /
    • 1999
  • A nonlinear model for time-step analysis of bridges subjected to two orthogonal horizontal components of earthquake motions was developed. The focus of the study was on elastomeric isolators with or without lead cores. The hysteretic behavior of the isolators, the columns, abutments, and shear keys was taken into account. The nonlinear analysis showed that, contrary to linear theory prediction, the use of isolators does not necessarily increase the displacement of the superstructure. Furthermore, it was shown that properly designed isolators can reduce the ductility demand in RC bridge columns substantially.