• 제목/요약/키워드: base isolated buildings

검색결과 66건 처리시간 0.02초

Structure-soil-structure interaction in a group of buildings using 3D nonlinear analyses

  • Sharifi, Behroozeh;Nouri, Gholamreza;Ghanbari, Ali
    • Earthquakes and Structures
    • /
    • 제18권6호
    • /
    • pp.667-675
    • /
    • 2020
  • The current study compares the effect of structure-soil-structure interaction (SSSI) on the dynamic responses of adjacent buildings and isolated structures including soil-structure interaction (SSI) with the responses of fixed-base structures. Structural responses such as the relative acceleration, displacement, drift and shear force were considered under earthquake ground motion excitation. For this purpose, 5-, 10- and 15-story structures with 2-bay moment resisting frames resting on shallow foundations were modeled as a group of buildings in soft soil media. Viscous lateral boundaries and interface elements were applied to the soil model to simulate semi-infinite soil media, frictional contact and probable slip under seismic excitation. The direct method was employed for fully nonlinear time-history dynamic analysis in OpenSees using 3D finite element soil-structure models with different building positions. The results showed that the responses of the grouped structures were strongly influenced by the adjacent structures. The responses were as much as 4 times greater for drift and 2.3 times greater for shear force than the responses of fixed-base models.

Comparing the dynamic behavior of a hospital-type structure with fixed and isolated base

  • Nasery, Mohammad Manzoor;Ergun, Mustafa;Ates, Sevket;Husem, Metin
    • Earthquakes and Structures
    • /
    • 제9권3호
    • /
    • pp.657-671
    • /
    • 2015
  • The level of ductility is determined by depending on the intended use of the building, the region's seismic characteristics and the type of structural system when buildings are planned by engineers. Major portion of seismic energy is intended to be consumed in the plastic zone in structural systems of high ductility, so the occurrence of damages in load bearing and non-load bearing structural elements is accepted in planning stage under severe earthquakes. However, these damages must be limited among specific values in order not to endanger buildings in terms of the bearing capacity. Isolators placed between the basement and upper structure make buildings behave elastically by reducing the effects of seismic loads and improving seismic performance of building significantly. Thus, damages can be limited among desired values. In this study, the effectiveness of seismic isolation is investigated on both fixed based and seismic isolated models of a hospital building with high ductility level with regard to lateral displacements, internal forces, structural periods and cost of the building. Layered rubber bearings are interposed between the base of the structure and foundation. Earthquake analysis of the building are performed using earthquake records in time domain (Kocaeli, Loma Prieta and Landers). Results obtained from three-dimensional finite element models are presented by graphs and tables in detail. That seismic isolation reduces significantly the destructive effects of earthquakes on structures is seen from the results obtained by seismic analysis.

Hybrid-type 면진장치를 이용한 성능설계 개념의 적용 (Application of Performance Based Design Concept using Hybrid-type Base-Isolation System)

  • 천영수;황기태;임종만
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.502-505
    • /
    • 2004
  • Now for the first time in Korea pilot project on application of base isolation system to the RC building is carrying out by collaboration with KNHC and DRB dongil. The hybrid-type base isolation system, which is composed of sliding bearings and laminated rubber bearings and can make the resonance period of base isolated buildings comparatively long up to 4 or 5 seconds, is applied to this building. In this paper the overview of this project, the dynamic characteristics of this particular building and the response reduction effect against earthquakes are presented.

  • PDF

Application Examples of CFD at the Planning Stage of High-Rise Buildings

  • Hiroto, Kataoka;Yoshiyuki, Ono;Kota, Enoki;Yuichi, Tabata;Satoko, Kinashi
    • 국제초고층학회논문집
    • /
    • 제11권3호
    • /
    • pp.145-156
    • /
    • 2022
  • Application examples of computational fluid dynamics (CFD) in the planning stage of high-rise buildings are introduced. First, we introduce examples of applications in the environmental field. The pedestrian wind environment was one of the earliest practical examples of CFD. CFD was also employed to validate the heat island mitigation measures proposed as part of the new construction plan. Second, application examples of wind-force evaluations are introduced. Prediction examples are presented for the peak wind pressure around a complex-shaped building and the wind force evaluation for a base-isolated building. The results prove that the results of the proper execution of CFD are equivalent to those of the wind tunnel experiment. As examples of CFD applications of other issues related to high-rise building planning, we introduce snow accretion on outer walls and high-temperature exhaust from emergency generators. Finally, the future prospects for the use of CFD are discussed.

기초분리된 원전 격납구조물의 무작위 반응해석 (Random Response Analysis of Base Isolated Nuclear Container System)

  • 홍원기;전제성;유광호
    • 전산구조공학
    • /
    • 제7권4호
    • /
    • pp.145-150
    • /
    • 1994
  • 고무받침등을 이용한 기초분리공법은 상부구조물의 고유주기를 기초분리가 되지 않은 구조물보다 길게 하여줌으로써 지진에 의해서 발생하는 밑면 전단력을 감소시키는 원리를 이용하고 있다. 이 원리는 지진지역에 있는 일반 건물구조물에 세계각국에서 성공적으로 사용되고 있으며, 특히 교량구조물에도 그 역할이 입증되어 미국, 일본 등을 중심으로 적용이 급증하고 있다. 본 논문은 동일한 원리를 우리나라에서 건설되고 있는 원전구조물에 적용하여 기초분리된 원전 격납구조물의 거동을 고찰하고자 한다. 이와 같은 거동해석을 실시하는데 있어서, 시간영역 해석은 많은 시간과 경비를 요하게 되어 현실적으로 사용하기에 여러 어려움이 존재하게 되는데 반해, 주파수영역 해석은 이러한 단점을 극복하게 되어 실용적이며 효과적인 결과를 제공하게 된다. 즉, 입력 지진파에 의한 기초분리 원전 격납구조물의 거동을 예측함에 있어서 시스템 복소주파 응답함수 및 지진파의 파워스펙트럼 계산을 통하여 보다 합리적인 접근이 가능함을 보이고자 한다.

  • PDF

Effectiveness of non-linear fluid viscous dampers in seismically isolated buildings

  • Guler, Elif;Alhan, Cenk
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.191-204
    • /
    • 2019
  • Near-field earthquake records including long-period high-amplitude velocity pulses can cause large isolation system displacements leading to buckling or rupture of isolators. In such cases, providing supplemental damping in the isolation system has been proposed as a solution. However, it is known that linear viscous dampers can reduce base displacements in case of near-field earthquakes but at the potential expense of increased superstructure response in case of far-field earthquakes. But can non-linear dampers with different levels of non-linearity offer a superior seismic performance? In order to answer this question, the effectiveness of non-linear viscous dampers in reducing isolator displacements and its effects on the superstructure response are investigated. A comparison with linear viscous dampers via time history analysis is done using a base-isolated benchmark building model under historical near-field and far-field earthquake records for a wide range of different levels of non-linearity and supplemental damping. The results show that the non-linearity level and the amount of supplemental damping play important roles in reducing base displacements effectively. Although use of non-linear supplemental dampers may cause superstructure response amplification in case of far-field earthquakes, this negative effect may be avoided or even reduced by using appropriate combinations of non-linearity level and supplemental damping.

MR 감쇠기를 적용한 기초격리구조물의 지진응답 (Seisminc Response of Base Isolated Structures with MR Dampers)

  • 고봉준;황인호;이종세
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.505-512
    • /
    • 2003
  • As large structures such as highrise buildings and cable-stayed bridges become lighter and more flexible, the necessity of structural control for reducing excessive displacement and acceleration due to seismic excitation is increased. As a means to minimize seismic damages, various base isolation systems are adopted or considered for adoption. In this study, the seismic performance of M dampers are studied and compared with that of the NZ system as a base isolation system As the control algorithm of the MR damper, the clipped-optimal control(applied LQR method) is employed. A five-story building is modeled and the seismic performance of the two systems subjected to three different earthquakes is compared. The results show that the M damper system can provide superior protection than the NZ system for a wide range of ground motions.

  • PDF

Dimensional analysis of base-isolated buildings to near-fault pulses

  • Istrati, Denis;Spyrakos, Constantine C.;Asteris, Panagiotis G.;Panou-Papatheodorou, Eleni
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.33-47
    • /
    • 2020
  • In this paper the dynamic behavior of an isolated building subjected to idealized near-fault pulses is investigated. The building is represented with a simple 2-DOF model. Both linear and non-linear behavior of the isolation system is considered. Using dimensional analysis, in conjunction with closed form mathematical idealized pulses, appropriate dimensionless parameters are defined and self-similar curves are plotted on dimensionless graphs, based on which various conclusions are reached. In the linear case, the role of viscous damping is examined in detail and the existence of an optimum value of damping along with its significant variation with the number of half-cycles is shown. In the nonlinear case, where the behavior of the building depends on the amplitude of the excitation, the benefits of dimensional analysis are evident since the influence of the dimensionless 𝚷-terms is easily examined. Special consideration is given to the normalized strength of the non-linear isolation system that appears to play a complex role which greatly affects the response of the 2-DOF. In the last part of the paper, a comparison of the responses to idealized pulses between a linear fixed-base SDOF and the respective isolated 2-DOF with both linear and non-linear damping is conducted and it is shown that, under certain values of the superstructure and isolation system characteristics, the use of an isolation system can amplify both the normalized acceleration and displacement of the superstructure.

Efficient optimal design of passive structural control applied to isolator design

  • Kamalzare, Mahmoud;Johnson, Erik A.;Wojtkiewicz, Steven F.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.847-862
    • /
    • 2015
  • Typical base isolated buildings are designed so that the superstructure remains elastic in design-level earthquakes, though the isolation layer is often quite nonlinear using, e.g., hysteretic elements such as lead-rubber bearings and friction pendulum bearings. Similarly, other well-performing structural control systems keep the structure within the linear range except during the most extreme of excitations. Design optimization of these isolators or other structural control systems requires computationally-expensive response simulations of the (mostly or fully) linear structural system with the nonlinear structural control devices. Standard nonlinear structural analysis algorithms ignore the localized nature of these nonlinearities when computing responses. This paper proposes an approach for the computationally-efficient optimal design of passive isolators by extending a methodology previously developed by the authors for accelerating the response calculation of mostly linear systems with local features (linear or nonlinear, deterministic or random). The methodology is explained and applied to a numerical example of a base isolated building with a hysteretic isolation layer. The computational efficiency of the proposed approach is shown to be significant for this simple problem, and is expected to be even more dramatic for more complex systems.

Effect of base isolation systems on increasing the resistance of structures subjected to progressive collapse

  • Tavakoli, Hamid R.;Naghavi, Fahime;Goltabar, Ali R.
    • Earthquakes and Structures
    • /
    • 제9권3호
    • /
    • pp.639-656
    • /
    • 2015
  • Seismic isolation devices are commonly used to mitigate damages caused by seismic responses of structures. More damages are created due to progressive collapse in structures. Therefore, evaluating the impact of the isolation systems to enhance progressive collapse-resisting capacity is very important. In this study, the effect of lead rubber bearing isolation system to increase the resistance of structures against progressive collapse was evaluated. Concrete moment resisting frames were used in both the fixed and base-isolated model structures. Then, progressive collapse-resisting capacity of frames was investigated using the push down nonlinear static analysis under gravity loads that specified in GSA guideline. Nonlinear dynamic analysis was performed to consider dynamic effects column removal under earthquake. The results of the push down analysis are highly dependent on location of removal column and floor number of buildings. Also, seismic isolation system does not play an effective role in increasing the progressive collapse-resisting capacities of structures under gravity loads. Base isolation helps to localize failures and prevented from spreading it to intact span under seismic loads.