• 제목/요약/키워드: base heating

검색결과 256건 처리시간 0.024초

로켓엔진 병렬화에 의한 저부가열의 수치적 예측 (Numerical Prediction of the Base Heating due to Rocket Engine Clustering)

  • 김성룡;김인선
    • 한국전산유체공학회지
    • /
    • 제9권3호
    • /
    • pp.18-25
    • /
    • 2004
  • Multi plume effects on the base heating have been Investigated with a CFD program. As the flight altitude increases, the plume expansion angle increases regardless of the single or clustered engine. The plume interaction of the clustered engine makes a high temperature thermal shear in the center of four plumes. At low altitude, the high temperature shear flow stays in the center of plumes, but it increases up to engine base with the increasing altitude. At high altitude, the flow from plume to base and the flow from base into outer free stream are supersonic, which transfers the high heat in the center of plumes to the base region. The radiative heat of the clustered engine varies from 220 kW/m² to 469 kW/m² with increasing altitude while those of the single engine are 10 kW/m² and 43.7 kW/m². And the base temperature of the clustered engine varies from 985K to 1223K, and those of the single engine are 483K and 726K. This big radiative heat of clustered engine can be explained by the active high temperature base flow and strong plume interactions.

스마트 베이스 레이어 의복의 효과적인 발열모드 설정을 위한 사용자의 자율적 가열행동 연구 (User's Voluntary Heating Behavior for the Programming of the Efficient Heating Mode of Smart Base Layer Clothing)

  • 이희란;홍경희;이예진;김소영
    • 한국의류학회지
    • /
    • 제41권5호
    • /
    • pp.872-882
    • /
    • 2017
  • There are no specific guidelines on how to control the heat input for the heat generating smart base layer. This study investigated the mode of actuating heat pad attached to the base layer by performing a human wear test in a cold environment. Subjects participating in the test wore T-shirts, jumper and pants on the base layer with heating pads. Skin temperature, total time of heating and the number of switching for the heating mode were observed as the subject controlled the heating mode voluntarily. The comfortable range of skin temperature on the abdomen was larger than on the lower back. The subject felt hot and turned off the switch when the mean skin temperature of the abdomen was $48.8^{\circ}C$ and the lower back was $40.1^{\circ}C$. The total heating time and the number of actuating switching were larger for women than men. The voluntary action of heating for men with high cold sensitivity was significantly different from men with low cold sensitivity. Therefore, it is necessary (depending on gender and cold sensitivity) to set the heating mode differently for the automatic heat control of a future smart base layer.

유한체적법에 의한 로켓플룸 저부가열의 열복사 모델 (Thermal radiation model for rocket plume base heating using the finite-volume method)

  • 김만영;백승욱
    • 대한기계학회논문집B
    • /
    • 제20권11호
    • /
    • pp.3598-3606
    • /
    • 1996
  • The finite volume method for radiation is applied to investigate a radiative heating of rocket base plane due to searchlight and plume emissions. Exhaust plume is assumed to absorb, emit and scatter the radiant energy isotropically as well as anisotropically, while the medium between plume boundary and base plane is cold and nonparticipating. Scattering phase function is modelled by a finite series of Legendre polynomials. After validating benchmark solution by comparison with that of previous works obtained by the Monte-Carlo method, further investigations have been done by changing such various parameters as plume cone angle, scattering albedo, scattering phase function, optical radius and nozzle exit temperature. The results show that the base plane is predominantly heated by the plume emission rather than the searchlight emission when the nozzle exit temperature is the same as that of plume.

플룸에 의한 액체로켓 저부면 복사 가열 해석 (Numerical Analysis on Radiative Heating of a Plume Base in Liquid Rocket Engine)

  • 손채훈;김영목
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.65-70
    • /
    • 1999
  • Radiative heating of a liquid rocket base plane due to plume emission is numerically investigated. Calculation of flow and temperature fields around rocket nozzle precedes and thereby realistic plume shape and temperature distribution inside the plume are obtained. Based on the calculated temperature field, radiative transfer equation is solved by discrete ordinate method. The averaged radiative heat flux reaching the base plane is about $5kW/m^2$ at the flight altitude of 10.9km. This value is small compared with radiative heat flux caused by constant-temperature (1500K) plume emission, but it is not negligibly small. At higher altitude (29.8km), view factor between the babe plane and the exhaust plume is increased due to the increased expansion angle of the plume. Nevertheless, the radiative heating disappears since the base plane is heated to high temperature (above 1000K) due to convective heat transfer.

  • PDF

복부 가열 패드를 부착한 상의 베이스 레이어의 여유량에 따른 인체 반응 (Human Responses to Pattern Ease of Base Layer with Abdominal Heating Pads)

  • 이경미;홍경희;이예진
    • 한국의류학회지
    • /
    • 제41권4호
    • /
    • pp.687-697
    • /
    • 2017
  • To figure out an appropriate pressure level for a body warming base layer, human responses were observed when the pattern reduction of base layers varied. Under the condition of $2^{\circ}C$, 60% RH, 0.1m/s, ten male subjects participated in the experiment with four sizes of experimental vests where heating pads were attached. The subjective evaluations of the heating vests with different sizes were reported using 7 or 9 point scales. We simultaneously observed chest, abdomen and scapula skin temperatures and microclimate humidity. It was found that the tight pattern as in the case of A or B provided a warmer subjective sensation and skin temperature than C or D; however, there were no differences in skin temperature at the chest. Eventually, the chest temperature decreased after about 30 mins of heating; however, temperature of abdomen increased and indicated that heating with two commercial pads used was inadequate for whole body warming. The pressure sensation of 'tight' was improved after warming the abdomen in a cold environment. Overall, the gaps beyond the original circumference of the abdomen, as in C or D, were not desirable for the local heating of abdomen under the conditions of this experiment where walking was included in the protocol. The experiment garment B with nude waist circumference was the best, and D with the largest ease, was the worst for a comfortable warming vest.

최적 난방부하 예측 제어기 설계 (A Controller Design for the Prediction of Optimal Heating Load)

  • 정기철;양해원
    • 제어로봇시스템학회논문지
    • /
    • 제6권6호
    • /
    • pp.441-446
    • /
    • 2000
  • This paper presents an approach for the prediction of optimal heating load using a diagonal recurrent neural networks(DRNN) and data base system of outdoor temperature. In the DRNN, a dynamic backpropagation(DBP) with delta-bar-delta teaming method is used to train an optimal heating load identifier. And the data base system is utilized for outdoor temperature prediction. Compared to other kinds of methods, the proposed method gives better prediction performance of heating load. Also a hardware for the controller is developed using a microprocessor. The experimental results show that prediction enhancement for heating load can be achieved with the proposed method regardless of the its inherent nonlinearity and large time constant.

  • PDF

니켈기 초내열 합금의 천이액상확산접합 특성에 미치는 접합 온도 및 가열 속도의 영향 (Effect of Bonding Temperature and Heating Rate on Transient Liquid Phase Diffusion Bonding of Ni-Base Superalloy)

  • 최우혁;김성욱;김종현;김길영;이창희
    • Journal of Welding and Joining
    • /
    • 제23권2호
    • /
    • pp.52-58
    • /
    • 2005
  • This study was carried out to investigate the effect of bonding temperature and heating rate on transient liquid phase diffusion bonding of Ni-base superalloy. The heating rate was varied by $0.1^{\circ}C$/sec, $1^{\circ}C$/sec, $10^{\circ}C$/sec to the bonding temperatures $1100^{\circ}C,\;1150^{\circ}C,\;1200^{\circ}C$ under vacuum. As bonding temperature increased, maximum dissolution width of base metal increased, but a dissolution finishing time decreased. The eutectic width of insert metal in the bonded interlayer decreased linearly in proportion to the square root of holding time during isothermal solidification stage. The bonding temperature was raised, isothermal solidification rate slightly increased. As the heating rate decreased and the bonding temperature increased, the completion time of dissolution after reaching bonding temperature decreased. When the heating rate was very slow, the solidification proceeded before reaching bonding temperature and the time required for the completion of isothermal solidification became reduced.

입자에 의한 항공기 플룸의 열복사 가열에 관한 연구 (Investigation of the Radiative Heating from Aircraft Plume with Particles)

  • 고건영;이경주;이성남;김원철;백승욱;김만영
    • 한국항공우주학회지
    • /
    • 제40권9호
    • /
    • pp.737-744
    • /
    • 2012
  • 유한체적법을 이용하여 설정된 가상의 노즐 조건에 따라 비행체 배기플룸의 SE와 PE에 의한 열복사 저부가열 해석 연구를 수행하였다. 저부면에서의 복사열유속을 얻기 위해 배기플룸은 흡수, 방사 및 산란하는 매질을 고려하였다. 저부면은 차가운 흑체이고 비회색가스와 입자의 복사 물성치는 회색가스가중합법(WSGGM)을 사용하였다. 후방 몬테카를로 방법을 사용한 기존의 연구와 비교하여 검증한 후, 입자의 농도, 온도, 그리고 등방성 또는 이방성 산란에 따른 복사저부가열을 해석하였다. 그 결과, 복사열유속은 노즐 출구와의 거리가 멀어지거나 비행 고도가 증가할수록 감소하고 입자의 온도가 높아질수록 복사열유속은 증가한다. 또한 전방산란은 PE를 증가시키고 후방산란은 SE를 증가시켰다.

플룸에 의한 액체로켓 저부면 복사 가열 해석 (Numerical Analysis on Radiative Heating of a Plume Base in Liquid Rocket Engine)

  • 손채훈;김영목
    • 한국추진공학회지
    • /
    • 제9권3호
    • /
    • pp.85-91
    • /
    • 2005
  • 로켓노즐로부터 방사되는 플룸에 의한 로켓 저부면의 복사 가열을 수치해석적으로 조사하였다. 로켓노즐 주위의 유동 및 온도장의 계산이 선행되었으며, 그에 따라 실제적인 플룸의 형태와 플룸내부의 온도분포를 얻었다. 계산된 온도장을 토대로, 복사 열전달 방정식을 구분종좌법을 이용하여 풀이하였다. 견본 로켓 플룸에 대해 계산한 결과, 저부면에 도달하는 평균복사열은 비행고도 10.9 km에서 약 5kw/m$^{2}$ 이었다. 이 수치는, 플룸의 공간적인 온도분포를 고려하지 않고 일정온도 (1500 K) 가정하에 계산된 복사량에 비하여 작은 값이지만, 그 절대적인 크기를 무시할 수 있을 정도로 작은 값은 아니다. 고고도(29.8 km)에서는 플룸의 팽창 때문에 저부면과 배기 플룸 사이의 보기계수가 증가하게 된다. 그러나, 대류 열전달에 의해 저부면이 1000 K이상으로 가열되기 때문에 복사가열 현상은 사라지게됨을 알았다.

열전소자를 이용한 차량용 독립 냉난방시스템에 대한 실험적 연구 (Experimental Study of Standalone Cooling and Heating System using Thermoelectric Element for Vehicles)

  • 이대웅
    • 설비공학논문집
    • /
    • 제26권8호
    • /
    • pp.375-380
    • /
    • 2014
  • The purpose of this paper is to investigate the cooling and heating performance of a standalone-type thermoelectric system equipped with a thermoelectric module. The system consists of a blower and two thermoelectric modules with a fin, which is soldered onto both sides of the thermoelectric module and a courtesy light. The thermoelectric system experiment is conducted with the intake voltage to find the optimum cooling and heating performance of each. The results showed that the cooling capacity and coefficient of performance (COP) were 22 W and 0.31, and the heating capacity and COP were 147 W and 1.1, respectively. In the vehicle cooling and heating performance test in a climate wind tunnel, the results showed that the standalone thermoelectric system's cooling performance was slightly better than the base system; and the heating performance of the standalone thermoelectric system was $54.1^{\circ}C$ and the COP was 1.3, compared to the base system.