• Title/Summary/Keyword: base expansion

Search Result 388, Processing Time 0.026 seconds

Evaluation of the Installation Mechanism of the Micropile with the Base Expansion Structure Using a Centrifuge Model Test (원심모형실험을 활용한 선단확장형 마이크로파일의 설치 메커니즘 평가)

  • Kim, Jae-Hyun;Kim, Seok-Jung;Han, Jin-Tae;Lee, Seokhyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.37-49
    • /
    • 2021
  • Micropiles are widely used in construction field to enhance bearing capacity and reduce settlement of existing foundation. It has various benefits such as low construction expense, simple installation process, and small construction equipment. Recently, new microple equipped with the base expansion structure at the end has been developed to improve the foundation bearing capacity. The improvement of load capacity can be conceptually achieved by expanding the base expansion structure when a load is applied to the micropile. However, the expansion mechanism of the base expansion structure and the improvement of load capacity of the micropile were not yet experimentally validated. Therefore, in this study, a series of centrifuge model tests was performed to evaluate the effect of the base expansion structure on the improvement of load capacity. Two types of soil, sand and weathered rock, were prepared and the loading tests were performed using the real micropile with the base expansion structure. During the tests, the earth pressures surrounding the base expansion structure were monitored. As a result, when a load of 30 kN was applied to the micropile, the increase in the ratio of the horizontal to vertical pressure increment (∆σh/∆σ𝜈) ranged from 0.4 to 0.58 in sand and ∆σh/∆σ𝜈 = 0.19 in weathered rock, respectively. Therefore, it can be concluded that the increase in the horizontal earth pressure adjacent to the base expansion structure will improve the bearing capacity of the micropile.

Study of Base DRAG Prediction With Chamber Pressure at Super-Sonic Flow (초음속 유동에서 챔버 압력에 따른 기저항력 변화 예측)

  • Kim, Duk-Min;Nam, Junyeop;Lee, Hyoung Jin;Noh, Kyung-Ho;Lee, Daeyeon;Kang, Dong-Gi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.849-859
    • /
    • 2020
  • The semi-empirical equation and commercial computational tool were used to predict the base drag of a guided missile with free-stream Mach numbers and chamber pressures, and the results were generally agree each other. Differences in flow characteristics and base drags were observed with over/under expansion conditions by the nozzle. Under the over-expansion condition, the base pressure decreased as the expansion fan was generated at upper region of the base, and base pressure decreased further with increasing free-stream Mach number as the expansion becomes strong. Under the under-expansion conditions, a shock wave was generated around the base by the influence of the nozzle flow, which increased the base pressure, and the effect increased as the chamber pressure increased. Under the same chamber pressure condition, as the free-stream Mach number increases, the characteristic that the base pressure decreases as the shock wave generated at the base moves downstream was observed.

Effect of Base Paper Properties on Warp of Corrugated Board (골판지의 와프 현상발생에 대한 원지 특성의 영향)

  • Lee Jin-Ho;Park Jong-Moon;Lee Sang-Hyun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.1 s.113
    • /
    • pp.54-61
    • /
    • 2006
  • Basically corrugated board is composed of three layers of different basis weight and stock composition. Warp is well-known for one of the most important problems of corrugated board production. Warp is caused by difference of hygro-expansibility of linears between top and bottom. This research was performed to evaluate the effect of paper properties on the warp of corrugated board. To evaluate warp, dynamic expansion properties of paper was tested using DPM(dynamic penetration measuring system). The effects of sizing, stock composition and wet-pressing on dynamic expansion properties were also evaluated. Commercial base papers showed different dynamic expansion property depending on stock composition and papermaking operation. Sizing treatment decreased and wet-pressing increased the amount of dynamic expansion. To reduce warp of corrugated board, management of dynamic expansion of base papers should be controlled by manipulating moisture, heat and tension, using a variety of adjustments available on the corrugator.

3-D Numerical Analysis for the Verification of Bearing Mechanism and Bearing Capacity Enhancement Effect on the Base Expansion Micropile (선단 확장형 마이크로파일의 3차원 수치해석을 통한 지지 메커니즘 및 지지력 증대효과 검증)

  • Lee, Seokhyung;Han, Jin-Tae;Jin, Hyun-Sik;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.2
    • /
    • pp.19-31
    • /
    • 2021
  • Micropiles are cast-in-place piles with small diameters. The advantage of micropile is low construction expense and simple procedures, so it is widely applied to existing buildings and structures for the reinforcement of foundation and seismic performances. The base expansion structure has been developed following the original mechanism of horizontal expansion steps under compressive loading. This kind of structure can be installed at the pile end to improve the bearing capacity by tip area enlargement and horizontal force increment to the pile surface area. However, 'Micropile with base expansion structure' cannot be put into practical use, because detailed verification for the developed technique has not been conducted so far. In this research, 3-D numerical analysis was conducted to figure out the bearing mechanism of base expansion micropile and to verify the bearing capacity improvement compared to the general micropiles. 3-D modelling of micropile with base expansion structure was carried out and input parameter was determined. Bearing mechanism induced by base expansion structure was analyzed by lab-scale modelling, and bearing capacity improvement was verified by field-scale analysis.

Evaluation of Bearing Capacity Enhancement Effect of Base Expansion Micropile Based on a Field Load Test (현장재하시험을 통한 선단확장형 마이크로파일의 지지력 증대효과 분석)

  • Kim, Seok-Jung;Lee, Seokhyung;Han, Jin-Tae ;Hwang, Gyu-Cheol;Lee, Jeong-Seob ;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.31-44
    • /
    • 2023
  • A base expansion micropile was developed to improve the bearing capacity of the micropile, which bears a simple device installed at the pile base. Under an axial load, this base expansion structure radially expands at the pile tip and attaches itself around ground, compressing the boring wall in the construction stage. In this study, conventional and base expansion micropiles were constructed in the weathered rock where micropiles are commonly installed. Further, field load tests were conducted to verify the bearing capacity enhancement effect. From the load test results, it was revealed that the shaft resistance of base expansion micropiles was about 12% higher than that of conventional micropiles. The load transfer analysis results also showed that compared to conventional micropiles, the unit skin friction and unit end bearing of base expansion micropiles were 15.4% and 315.1% higher, respectively, in the bearing zone of the micropile.

Three-Dimensional Numerical Analysis for Verifying Behavioral Mechanism and Bearing Capacity Enhancement Effect According to Tip Elements (선단 고정 지압구의 거동 메커니즘과 형상에 따른 지지력 증대효과 검증을 위한 3차원 수치해석)

  • Lee, Seokhyung;Kim, Seok-Jung;Han, Jin-Tae;Jin, Hyun-Sik;Hwang, Gyu-Cheol;Lee, Jeong-Seob
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.53-67
    • /
    • 2022
  • Micropiles are cast-in-place-type piles with small diameters. They are widely used for the foundation reinforcement of existing buildings and structures because this technique is easy to construct and economic. A base expansion structure is developed following the mechanism of radial expansion at the pile tip under compression. Numerical analysis, durability tests, and centrifuge tests have been conducted using the base expansion structure. In this study, three-dimensional numerical modeling was performed to describe the behavioral mechanism of the base expansion structure using steel bar penetration under compressive loading, and numerical analyses using centrifuge test conditions were performed for the comparative studies. Additionally, the base structure was modified based on the results of lab-scale analyses, and the bearing capacities of micropiles were compared using field-scale numerical analyses under various ground conditions.

Effects of V and C additions on the Thermal Expansion and Tensile Properties of a High Strength Invar Base Alloy (고강도 인바계 합금의 열팽창 및 인장 특성에 미치는 바나듐과 탄소 원소 첨가 영향)

  • Yun, A.C.;Yun, S.C.;Ha, T.K.;Song, J.H.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.44-51
    • /
    • 2015
  • The current study seeks to examine the effects of V and C additions on the mechanical and low thermal expansion properties of a high strength invar base alloy. The base alloy (Fe-36%Ni-0.9%Co-2.75%Mo-0.7Cr-0.23Mn-0.17Si-0.3%C, wt.%) contains $Mo_2C$ carbides, which form as the main precipitate. In contrast, alloys with additions of 0.4%V+0.3%C (alloy A) or 0.4%V+0.45%C (alloy B) contain $Mo_2C$+[V, Mo]C carbides. The average thermal expansion coefficients of these high strength invar based alloys were measured in the range of $5.16{\sim}5.43{\mu}m/m{\cdot}^{\circ}C$ for temperatures of $15{\sim}230^{\circ}C$. Moreover, alloy B showed lower thermal expansion coefficient than the other alloys in this temperature range. For the mechanical properties, the [V, Mo]C improved hardness and strengths(Y.S. and T.S.) of the high strength invar base alloy. T.S.(tensile strength) and Y.S.(yield strength) of hot forged alloy B specimen were measured at 844.6MPa and 518.0MPa, respectively. The tensile fractography of alloy B exhibited a ductile transgranular fracture mode and voids were initiated between the [V, Mo]C particles and the matrix. Superior properties of high strength and low thermal expansion coefficient can be obtained by [V, Mo]C precipitation in alloy B with the addition of 0.4%V and 0.45%C.

Maxillary expansion with the memory screw: a preliminary investigation

  • Halicioglu, Koray;Kiki, Ali;Yavuz, Ibrahim
    • The korean journal of orthodontics
    • /
    • v.42 no.2
    • /
    • pp.73-79
    • /
    • 2012
  • Objective: The purpose of this study was to investigate the effects of a newly developed rapid maxillary expansion screw-the memory screw-over 6 months. Methods: Five subjects, aged between 11.7 and 13.75 years, were enrolled in this study. All subjects underwent placement of a maxillary expansion appliance containing superelastic nickel-titanium open-coil springs in its screw bed. The parents of the patients and/or the patients themselves were instructed to activate the expansion screw by 2 quarter-turns 3 times a day (morning, midday, and evening; 6 quarter-turns a day). The mean expansion period was $7.52{\pm}1.04$ days. Dentoskeletal effects of the procedure, including dentoalveolar inclination, were evaluated. Measurements of all the parameters were repeated after 6 months of retention in order to check for relapse. Results: Sella-Nasion-A point (SNA) and Sella-Nasion/Gonion-Menton angles increased, and Sella-Nasion-B point (SNB) angle decreased in all the subjects during the expansion phase. However, they approximated to the initial values at the end of 6 months. On the other hand, the increments in maxillary apical base (Mxr-Mxl) and intermolar widths was quite stable. As expected, some amount of dentoalveolar tipping was observed. Conclusions: The newly developed memory expansion screw offers advantages of both rapid and slow expansion procedures. It widens the midpalatal suture and expands the maxilla with relatively lighter forces and within a short time. In addition, the resultant increments in the maxillary apical base and intermolar width remained quite stable even aft er 6 months of retention.

Query Expansion System for Semantic Contents Retrieval (시맨틱 콘텐츠 검색을 위한 질의 확장 시스템)

  • Lee, Moo-Hun;Choi, Eui-In
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.307-312
    • /
    • 2012
  • For semantic search methods to provide more accurate results than keyword-based search in a logical representation that uses a knowledge base are being studied. Than most of the user to use formal query language and schema used to interpret the meaning of a user keyword. In this paper, we propose to expand the user query for semantic search. In the proposed system, user query expansion component and a component to adjust the results to interpret user queries to take advantage of the knowledge base associated with a search term. Finally, a user query semantic interpretation, the proposed scheme to verify the experimental results of the prototype system is described.

Effects of Alpha Phase on the Fatigue Properties of Fe-29%Ni-17%Co Low Thermal Expansion Alloy (Fe-29%Ni-17%Co 저열팽창 합금의 피로 특성에 미치는 알파상의 영향)

  • Kim, Min-Jong;Gwon, Jin-Han;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.481-487
    • /
    • 2014
  • The effect of alpha phase on the fatigue properties of Fe-29%Ni-17%Co low thermal expansion alloy was investigated. Two kinds of alloys (Base alloy and Alpha alloy) were prepared by controlling the minimal alloy composition. Microstructure observation, tensile, high-cycle fatigue, and low-cycle fatigue results were measured in this study. The Base alloy microstructure showed typical austenite ${\gamma}$ phase. Alpha alloy represented the dispersed phase in the austenite ${\gamma}$ matrix. As a result of tensile testing, Alpha alloy was found to have higher strengths (Y.S. & T.S.) and lower elongation compared to those of the Base alloy. High cycle fatigue results showed that Alpha alloy had a higher fatigue limit (360MPa) than that (330MPa) of the Base alloy. The Alpha alloy exhibited the superior high cycle fatigue property in all of the fatigue stress conditions. SEM fractography results showed that the alpha phase could act to effectively retard both fatigue crack initiation and crack propagation. In the case of low-cycle fatigue, the Base alloy had longer fatigue life in the high plastic strain amplitude region and the Alpha alloy showed better fatigue property only in the low plastic strain amplitude region. The fatigue deformation behavior of the Fe-29%Ni-17%Co alloy was also discussed as related with its microstructure.