• Title/Summary/Keyword: base curve(BC)

Search Result 3, Processing Time 0.014 seconds

Fundamentals of Contact Lens Movement (콘택트렌즈 운동의 기초)

  • Kim, Dae Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.5-13
    • /
    • 2008
  • Purpose: This review article was written to investigate what kind of forces are acting on the contact lens fitted on the cornea and its subsequent motion. Methods: A capillary action-induced force develops in the tear layer between the lens and cornea, which leads to the restoring force due to difference in layer thickness according to lens rotation. The characteristics of the lens movement can be determined by the various factors such as friction between eyelid and lens, acceleration force based on blinking and the restoring force incorporated with the viscous damping force. A mathematical model which consists of the differential equations and their numerical solution was proposed to analyze the damped motion of lenses. The model predicts the time dependence of lenses during and after the blink varying the BC, blink period and eyelid pressure. Results: It was found that both the blink period and lid pressure increases the movement increases because of the enhanced lid friction. As the BC increases the viscous damping reduces due to the lacrimal layer's increase which resulted in the enhanced lens motion. After blink the lens illustrates the damped oscillation because of the restoring force by the increased lacrimal layer thickness and reduced viscous resistance. The time for the lens to return to the equilibrium shortens as the BC increase because of the resistance reduction. Conclusions: The movement of the contact lens is governed by the characteristics of the lacrimal layer between the lens and cornea as well as the lid blink.

  • PDF

Damped Oscill ations of the (Hard)Contact Lenses Posterior to the Blink (순목 후 콘택트(하드)렌즈의 감쇄 진동)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.3
    • /
    • pp.173-184
    • /
    • 2005
  • A capillary action-induced tension develops in the tear layer between the contact lens and cornea, which leads to the restoring force due to difference in the layer thickness between either upper and lower or left and right side of the lens when it is displaced off the equilibrium position as a result of blinking. Suppose the lens was displaced a certain distance from the equilibrium position, lens starts to oscillate toward the equilibrium position with the decreasing amplitude due to the restoring force as well as the velocity dependent viscous damping force in the tear layer. A mathematical model which consists of the differential equations and their numerical solution was proposed to analyze the damped oscillations of lenses. The model predicts the time dependence of lenses after the blink varying the various parameters such as Be, diameters, masses and positions displaced from equilibrium. As the Be and mass of lens increases the rate of amplitude reduction decreases, which requires a more time for the lens to return to the equilibrium position. It seems that varying the lens' displacement and diameters affect the lens' motion very little.

  • PDF

Analysis on the Depressing Force to the Cornea by Fitted Spherical Contact Lens (구면 콘택트렌즈의 피팅에 따른 각막 부착력 해석)

  • Kim, Dae Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.1
    • /
    • pp.97-106
    • /
    • 2011
  • Purpose: This review article was written to theoretically compare the depressing force (pressure, adhesion) to the cornea between when the spherical lenses were being tightly and flat fitted. Methods: Mathematical equations and their numerical solution programs (model) were formulated to calculate the depressing (adhesion) force to the cornea by both the tightly and flat fitted contact lenses. Based on this proposed model the effects of parameters characterizing a contact lens such as BCs, diameters, edge shape and corneal shape (ratio of long and short corneal axis, p) on the depressing force to the cornea were predicted/analyzed in both tightly and flat fitting regimes. Results: Corneal adhesion increased as the corneal p-value increased. Adhesion increase caused by the increased p-value was much larger in flat fitted case than in tight fitted one. Corneal adhesion reduced abruptly as the BC increased in flat fitting regimes while the adhesion rise was insignificant in tight fitting ones. Reduction in corneal adhesion due to lens-size increase was predicted to be insignificant in both tight and flat fitting regimes. Both the lens edge shape (edge angle) and thickness were relevant only in tight fitting regime. Corneal adhesion increased as the increased with tight-fitted lenses. As the thickness of tight fitted lenses increased, corneal adhesion inversely decreased. Conclusions: The two most significantly affecting the depressing force to cornea were found to be the degree of corneal bending toward the periphery and the BCs of lenses.