• Title/Summary/Keyword: base concrete

Search Result 687, Processing Time 0.034 seconds

A Fundamental Study on the Consistency of Base Concrete Influencing on the Worability and Engineering Properties of Folwing Concrete (유동화콘크리트의 시공성 및 공학적 특성에 미치는 베이스콘크리트의 시공연도에 관한 기초적 연구)

  • 김무한;송하영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.1-6
    • /
    • 1992
  • The objective of this report is to investigate and analyze the influnce of the different base concrete in consistency for the good production of superplasticized concrete (SPC) on the basis of the experimental results. The principal conclusions are summarized as follows. 1. SPC exhibited only slight bleeding in both cases of low and medium consistency of the base concrete, compared to the conventional concrete, compared to the coventional concrete. 2. SPC lost slump and flow value at a much faster rate than the conventional concrete with an equivalent water/cement ratio and initial consistency. 3. The compressive strength of SPC was fount to be higher than that of base and conventional concrete, and the case of base concrete with medium consistency showed a little more incretment than low consistency

  • PDF

The Effects of Superplasticizers on the Engineering Properties of Plain Concrete

  • Park, Seung-Bum
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.29-43
    • /
    • 1999
  • The effects of superplasticizers on fresh and hardened concrete were investigated. The experimental program included tests on the workability and slump loss, bleeding, setting time, air content, compressive, tensile and flexural strength, permeability, shrinkage, freeze-thaw durability and creep deformation. Properties of superplasticized concrete were compared with those of conventional and base concretes. Superplasticizers were observed to have an appreciable fluidifying action in fresh concrete. They permitted a significant water reduction while maintaining the same workability. Bleeding of superplasticized concrete was much lower than that of conventional concrete of the same consistency. This indicates that the use of superplasticizers did not affect the tendency of segregation of fresh concrete. The compressive, tensile, and flexural strengths of superplasticized concrete were significantly higher than those of conventional concrete. The permeability and drying shrinkage and creep of superplasticized concrete were less than those of conventional concrete, but there were no significant differences between base and superplasticized concrete. Compared with base concrete, non-air-entrained superplasticized concrete had slightly higher freeze-thaw durability. and superplasticized concrete with an appropriate amount of entrained air Eave even better resistance to freezing and thawing.

  • PDF

Application of Granulated Blast Furnace Slag to the Lean Concrete Base of Concrete Pavement (콘크리트포장 린콘크리트 기층에 고로슬래그 미분말 적용에 관한 연구)

  • 류명찬;엄주용;김대영;손진군
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.187-190
    • /
    • 1999
  • An experimental study is carried out to estimate the way of applying the granulated blast furnace slag[GBFS] to the lean concrete base of concrete pavement. According to the test results, this application seems promising. For this application, mixing percent of GBFS ranging from 30 to 50 is recommendable at this stage. And performance of base mixed with GBFS is greatly affected by the curing and placing condition. As long as all requirements for application of GBFS to the base is satisfied, better performance is expected.

  • PDF

A Study on the Reduction of Combined Deterioration by Mixing Latex in Base Concrete (바탕콘크리트의 라텍스 혼입에 따른 복합열화 저감에 관한 연구)

  • Kim, Dae-Geon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.101-102
    • /
    • 2023
  • This study aims to mix the base concrete by mixing latex to improve the durability performance to reduce the composite deterioration of the base concrete. Latex fiber has high resistance to freezing and thawing, adhesion, and deicing agent (calcium chloride), and it is used to secure long-term durability to reduce cracking and compound deterioration of concrete. In addition, through experiments, we are trying to find ways to improve the strength of concrete by studying the mixing of the appropriate mixing ratio of latex.

  • PDF

A Study on the Effects of Superplasticizers on the Engineering Preperties of Plain Concrete (I) (고성능유동화제가 콘크리트의 공학적 특성에 미치는 영향 (I))

  • 박승범;이보성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.3
    • /
    • pp.68-80
    • /
    • 1984
  • This study was attempted in order to investigate the effects of superplasticizers on fresh and hardened concrete. The experimental program included tests on the slump and slump loss, bleeding, time of set, air content, the compacting, factor Vee Dee, compressive strength, tensile and flexural strength, permeability, shrinkage and freege-thaw durability. The major conclusions that can be drawn on the study are as follows. 1. Superplasticizers were observed to have an appreciable fluidifying action in fresh concrete so that tinder appropriate conditions, they either considerably improved its workability or permitted a water reduction of at least 8-12% to be made while maintaining normal workability. 2. The bleeding ratios of base and S,P. Concrete were much lower than those of the conventional concrete. Differences between the base and S.P. Concrete were insignifician. 3. The setting time was the longest for conventionla concrete, followed by S.P. concrete and base concrete in thatorder. And AE water reduction admixtures showed an appreciable influence on the setting and hardening characteristics of concrete and prolonged the stiffening times. 4. The high initial slump values of S.P. concrete generally decreased rapidly with increased standing time. CF values showed increasing tendencies with the increase of S.P. content, and excessive addition of S.P. caused the segregation of fresh concrete, resulting in its rejection. 5. Though there was a slight increase in strength, no significant differences are observed between base and S.P. concrete in terms of the compressive, tensile and flexural strength. 6. The permeability of S.P. concrete was significantly less than that of the conventional concrete, and the shrinkage of S.P. concrete was considerably smaller than that of the conventional concrete, but there were no significant differences between base and S.P. concrete. 7. Compared to base concrete, S.P. concrete without entrained air tended to slightly increase freeze-thaw durability, and S.P. concrete with an appropriate entrained air gave satisfactory resistance to freezing and thawing.

  • PDF

Development and Property Analysis of Segregation-Reducing Type Flowing Concrete Using the Viscosity Agent (증점제를 이용한 분리저감형 유동화 콘크리트의 개발 및 그 특성분석)

  • 한천구;강의영;오선교;반호용
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.95-105
    • /
    • 1999
  • When superplasticizer is added to manufacture flowing concrete, the base concrete usually needs the adjustment to assure the sufficient fines contained to obtain flowable consistency without excessive bleeding or segregation. However, this may not only increase the cost, but also cause inconvenience in producing the base concrete. In this paper, the experiments are performed on normal base concrete to achieve a segregation-reducing flowing concrete by adding superplasticizer mixed with viscosity agents and AE admixtures. Three kinds of superplasticizer and two kinds of viscosity agent are selected. According to the results, with regard to the performance and cost of the admixtures, melamine type superplasticizer combined with the PEO viscosity agent and AE admixtures at the ratio 1:0.28:0.001 can acquire good quality and reduce the cost in producing the flowing concrete. With proper addition of combined superplasticizer, even though water to cement ratios of the base concrete are different, the segregation-reducing flowing concrete could be also achieved without reproportioning of the base concrete. However, it would be more desirable if the superplasticizer could be adjusted, before it is put into the practical use in order not to cause some other problems, such as rapid rate of slump loss and retarding of setting time.

Early Age Cracking Analysis of Massive Concrete Base Slab with Enhanced Microplane Model (개선된 미소면 모델을 적용한 매스콘크리트 기초슬래브의 초기균열거동 해석)

  • Lee, Yun;Kim, Jin-Keun;Woo, Sang-Kyun;Song, Young-Chul;Yi, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.458-461
    • /
    • 2006
  • Early age cracking of concrete is a widespread and complicated problem, and diverse applications in practical engineering have focused on this issue. Since massive concrete base slab composes the infrastructure of other concrete structures such as pier, concrete dam, and high rise buildings, early age cracking of that is considered as a crucial problem. In this study, finite element analysis (FEA) implemented with the age-dependent microplane model was performed. For a massive concrete base slab, cracking initiation and propagation, and deformation variation were investigated with concrete age. In massive concrete slab, autogenous shrinkage increases the risk of early age cracking and it reduces reinforcement effect on control of early age cracking. Gradual crack occurrence is experienced from exterior surface towards interior of the slab in case of combined hydration heat and autogenous shrinkage. FEA implemented with enhanced microplane model successfully simulates the typical cracking patterns due to edge restraint in concrete base slab.

  • PDF

A Fundamental Study on the Improvement of Superplasticizer for Manufacturing the High Quality Flowing Concrete in the Field (고품질 현장 유동화 콘크리트 제조를 위한 유동화제 성능 개선에 관한 기초적 연구)

  • 강의영;한만철;오선교;한천구;반호용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.33-36
    • /
    • 1998
  • Generally, the base concrete for manufacturing the flowing concrete has to increase the fine aggregate content or adjust the fines content prevent the concrete from segeration, However, it may not only increase the cost, but cause the inconvenience in production of base concrete. In this paper, the experiments is performed on the superplasticizer which is used for base concrete by mixing viscosity agents and AE admixtures. According to the results, it shows that it is possible to manufacture a flowing, non segregation, high durability and economical concrete in the field without increasing the fine aggregate content of base concrete, when the superplasticizer are mixed with viscosity agents and AE admixtures in an appropriate proportion.

  • PDF

Effect of Excessive Addition of Organic Admixtures on the Properties of Concrete (콘크리트용 유기혼화제의 과잉첨가 효과)

  • 최재진;박원태;김기형;최연왕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.631-637
    • /
    • 1999
  • Effect of excessive addition of water reducing agent was examined by concrete tests. Water reducing agents of lignin or naphtalene base were used in the experiment. Setting of concrete was retarded according to the increase of dosage of water reducing agent and was extremely delayed at the 3 times or more use of lignin base agent and near 5 times or more use of naphtalene base agent respectively. When water reducing agent was used more than 6 times of standard dosage, early strength of concrete was very low and the strength reduction was very severe at all test ages in the concrete using lignin base agent.

  • PDF

A Fundamental Study on the Mix Proportion of Base Concrete Influencing on the Workability and Engineering Properties of Flowing Concrete (유동화 콘크리트의 시공성 및 공화적 특성에 미치는 베이스콘크리트의 조합조건에 관한 기초적 연구)

  • 김무한;송하영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.29-32
    • /
    • 1991
  • This is the study on the performance of workability and engneering properties of flowing concrete using the superplasticizers, which are being used for control of the consistency of fresh concrete without modifying the properties of the hardened concrete and for production of high quality concrete at a low water-cement ratio. It is the aim of this study to analyze and investigate workability and engineering properties of flowing concrete according to the addition rate in poor and rich mix proportions of base concrete. Base on this fundamental investigation for the development of flowing concrete mix design, it could be drawn that the workability and engineering properties of flowing concreteare influenced greatly by mix proportion and dosage of superplasticizers.

  • PDF