• 제목/요약/키워드: base Motion

검색결과 564건 처리시간 0.026초

A Study on Rotary Weeding Blade Installation Angle for Reduction of Hand Vibration in Working Type Cultivator

  • Kwon, Tae Hyeong;Kim, Joonyong;Lee, Chungu;Kang, Tae Gyoung;Lee, Byeong-Mo;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • 제39권1호
    • /
    • pp.11-20
    • /
    • 2014
  • Purpose: Walking type cultivator used for weeding generated excessive handle vibration as well as bouncing motion depending on the weeding speed. This research was conducted to define a design factor of the rotary weeding blades for reducing soil reaction forces as well as hand vibration. Methods: The motion and forces acting on the rotary blades were reviewed to find out the most influencing parameter on hand vibration. The installation angle (IA) of the blade was selected and analyzed to determine the condition of no reaction force less. For removing the unnecessary upward soil reaction, the design factor theory of weeding blade was suggested based on geometrics and dynamics. For evaluation of design factor theory, the experiment in situ was performed base on ISO 5349:1. The vibration $a_{hv}$ and theoretical value $X_{MF}$ were compared with two groups that one was positive group ($X_{MF}$ > 0) and the other was negative group ($X_{MF}$ < 0). Results: $X_{MF}$ was derived from rotational velocity, forward velocity, disk diameter, weeding depth, blade's width and IA of blade. Two groups had significant difference (p < 0.05). In aspect of the group mean total exposure duration, positive group was 17.53% bigger than negative group. When disk radius 100, 150 and 200 mm, minimum IAs were $4{\sim}27^{\circ}$, $3{\sim}15^{\circ}$ and $2{\sim}10^{\circ}$, respectively. A spread sheet program which calculated XMF was developed by Excel 2013. Conclusions: According to this result, minimum IA of weeding blade for soil reaction reduction could be obtained. For reduction hand-arm vibration and power consumption, minimum IA is needed.

한국의 지반거동을 고려한 교량과 송전철탑의 지진취약도 분석 (Seismic Fragilities of Bridges and Transmission Towers Considering Recorded Ground Motions in South Korea)

  • 박효상;응웬 두이-두안;이태형
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.435-441
    • /
    • 2016
  • The Korean peninsula has known as a minor-to-moderate seismic region. However, some recent studies had shown that the maximum possible earthquake magnitude in the region is approximately 6.3-6.5. Therefore, a seismic vulnerability assessment of the existing infrastructures considering ground motions in Korea is necessary. In this study, we developed seismic fragility curves for a continuous steel box girder bridge and two typical transmission towers, in which a set of seven artificial and natural ground motions recorded in South Korea is used. A finite element simulation framework, OpenSees, is utilized to perform nonlinear time history analyses of the bridge and a commercial software, SAP2000, is used to perform time history analyses of the transmission towers. The fragility curves based on Korean ground motions were then compared with the fragility curves generated using worldwide ground motions to evaluate the effect of the two ground motion groups on the seismic fragility curves of the structures. The results show that both non-isolated and base-isolated bridges are less vulnerable to the Korean ground motions than to worldwide earthquakes. Similarly to the bridge case, the transmission towers are safer during Korean motions than that under worldwide earthquakes in terms of fragility functions.

지진취약도분석을 통한 교량의 지진위험도 평가 (Seismic Risk Assessment of Bridges Using Fragility Analysis)

  • 이진학;윤진영;윤정방
    • 한국지진공학회논문집
    • /
    • 제8권6호통권40호
    • /
    • pp.31-43
    • /
    • 2004
  • 지진취약도 분석을 통하여 교량의 지진 위험도를 평가하였다. 지진취약도 분석에서는 교각 하부의 소성힌지의 거동을 주요 손상인자로 분석하였으며, 또한 한반도 지진재해지도를 근거로 하여 지진발생확률을 산정한 후 이들을 이용하여 교량의 성능단계에 따른 손상발생확률을 분석하였다. 이 연구에서는 교각에 직접 전달되는 지진이 아닌 암반노두에서의 지진의 최대지반가속도에 대하여 지진취약도를 분석하였으며, 비선형 지진해석을 위해서는 층상지반의 영향으로 증폭된 지진하중을 고려하였다. 제안된 방법으로 예제교량의 지진위험도를 분석하였으며, 면진받침이 설치된 교량에 대한 지진 위험도의 저감 효과를 정량적으로 분석하였고, 지진재해지도에서의 조건이 다른 지역에 시공되는 경우의 지진위험도를 분석함으로써 현 시방서의 타당성을 간접적으로 검토하였다.

가상현실기반 낙하훈련시스템 개발 (Virtual Reality Based Fall Training System)

  • 유재정;강석중
    • 한국정보통신학회논문지
    • /
    • 제25권12호
    • /
    • pp.1749-1755
    • /
    • 2021
  • 가상현실은 게임, 오락, 통신, 스포츠, 건축 분야에서 활발히 적용되고 있다. 특히 교육 분야에도 많은 가상현실 기반의 교육 시스템이 개발되고 있어 효율적인 학습효과를 만들어내고 있다. 그러나 기술적 한계, 콘텐츠의 부족, 이론적 연구 부족 등으로 인해 아직은 군사용 교육 훈련 부분 적용되기에는 수준이 부족한 상태이다. 본 논문에서는 군사용 집단 강하 훈련에 적용 가능한 수준 높은 낙하훈련시스템을 개발하고, 개발에 필요한 핵심 기술과 구현방법을 연구하였으며, 개발 결과에 따른 효과를 분석하여 군사용 훈련시스템으로서의 가상현실기반 교육 시스템의 발전에 이바지하고자 한다.

뇌졸중 환자의 상지 기능에 기능적 전기 자극이 미치는 영향: 무작위대조군연구에 기초한 체계적 고찰 (Effect of Electrical Stimulation on Upper Extremity Function in Stroke Patients: A Systematic Review Based on Randomized Controlled Trials)

  • 황수진;서연주
    • PNF and Movement
    • /
    • 제20권2호
    • /
    • pp.147-156
    • /
    • 2022
  • Objective: Electrical stimulation is an assistive technology used to aid the recovery of upper limb use after stroke. The purpose of this systematic review was to determine the effects of electrical stimulation on upper extremity function in individuals with hemiparetic stroke and to develop an evidence base that supports the use of electrical stimulation for upper limb recovery after stroke. Design: A systematic review based on randomized controlled trials (RCTs). Methods: Studies published before April 20 2021 were collected for this review by searching PubMed, four other databases, and RCTs that reported the effects of electrical stimulation on upper extremity function in individuals with the characteristic stroke type. Information on the following parameters was extracted from each study: surname of first author, published year, country, participants, intervention, intervention's intensity, comparison, outcomes, additional therapy, and summary of results. This review also evaluated the bias within each study, including any selection bias, performance bias, detection bias, attrition bias, and reporting bias. Results: This review included five RCTs, and 208 stroke patients were included in the analysis. Stroke patients who underwent electrical stimulation showed significantly improved grip and pinch strengths, wrist range of motion, and basic daily living compared to those in the control group; however, there was no improvement in upper extremity function. Of the selected papers, 60% showed a "high risk" of performance bias, and 20% showed a "high risk" of detection bias. Conclusions: The results of this systematic review suggest that electrical stimulation provides some benefits to stroke patients, such as improved hand strength and range of motion. However, future studies are needed to provide clinical evidence of the effects of electrical stimulation on upper extremity function in stroke patients.

Ground response analysis of a standalone soil column model for IDA of piled foundation bridges

  • Hazem W. Tawadros;Mousa M. Farag;Sameh S.F. Mehanny
    • Earthquakes and Structures
    • /
    • 제24권4호
    • /
    • pp.289-301
    • /
    • 2023
  • Developing a competent soil-bridge interaction model for the seismic analysis of piled foundation bridges is of utmost importance for investigating the seismic response and assessing fragility of these lifeline structures. To this end, ground motion histories are deemed necessary at various depths along the piles supporting the bridge. This may be effectively accomplished through time history analysis of a free-field standalone soil column extending from bedrock level to ground surface subjected to an input bedrock motion at its base. A one-dimensional site/ground response analysis (vide one-directional shear wave propagation through the soil column) is hence conducted in the present research accounting for the nonlinear hysteretic behavior of the soil stratum encompassing the bridge piled foundation. Two homogeneous soil profiles atop of bedrock have been considered for comparison purposes, namely, loose and dense sand. Analysis of the standalone soil column has been performed under a set of ten selected actual bedrock ground motions adopting a nonlinear time domain approach in an incremental dynamic analysis framework. Amplified retrieved PGA and maximum soil shear strains have been generally observed at various depths of the soil column when moving away from bedrock towards ground surface especially at large hazards associated with high (input) PGA values assigned at bedrock. This has been accompanied, however, by some attenuation of the amplified PGA values at shallower depths and at ground surface especially for the loose sand soil and particularly for cases with higher seismic hazards associated with large scaling factors of bedrock records.

Comparison of seismic behavior of long period SDOF systems mounted on friction isolators under near-field earthquakes

  • Loghman, Vahid;Khoshnoudian, Faramarz
    • Smart Structures and Systems
    • /
    • 제16권4호
    • /
    • pp.701-723
    • /
    • 2015
  • Friction isolators are one of the most important types of bearings used to mitigate damages of earthquakes. The adaptive behavior of these isolators allows them to achieve multiple levels of performances and predictable seismic behavior during different earthquake hazard levels. There are three main types of friction isolators. The first generation with one sliding surface is known as Friction Pendulum System (FPS) isolators. The double concave friction pendulum (DCFP) with two sliding surfaces is an advanced form of FPS, and the third one, with fully adaptive behavior, is named as triple concave friction pendulum (TCFP). The current study has been conducted to investigate and compare seismic responses of these three types of isolators. The structure is idealized as a two-dimensional single degree of freedom (SDOF) resting on isolators. The coupled differential equations of motion are derived and solved using state space formulation. Seismic responses of isolated structures using each one of these isolators are investigated under seven near fault earthquake motions. The peak values of bearing displacement and base shear are studied employing the variation of essential parameters such as superstructure period, effective isolation period and effective damping of isolator. The results demonstrate a more efficient seismic behavior of TCFP isolator comparing to the other types of isolators. This efficiency depends on the selected effective isolation period as well as effective isolation damping. The investigation shows that increasing the effective isolation period or decreasing the effective isolation damping improves the seismic behavior of TCFP compared to the other isolators. The maximum difference in seismic responses, the base shear and the bearing displacement, for the TCFP isolator are calculated 26.8 and 13.4 percent less than the DCFP and FPS in effective isolation damping equal to10%, respectively.

Evaluation of responses of semi-rigid frames at target displacements predicted by the nonlinear static analysis

  • Sharma, Vijay;Shrimali, Mahendra K.;Bharti, Shiv D.;Datt, Tushar K.
    • Steel and Composite Structures
    • /
    • 제36권4호
    • /
    • pp.399-415
    • /
    • 2020
  • Responses of semi-rigid frames having different degrees of semi-rigidity obtained by the nonlinear static analysis (NSA) are evaluated at specific target displacements by comparing them with those obtained by the nonlinear time-history analysis (NTHA) for scaled earthquakes. The peak ground accelerations (PGA) of the earthquakes are scaled such that the obtained peak top story displacements match with the target displacements. Three different types of earthquakes are considered, namely, far-field and near-field earthquakes with directivity and fling-step effects. In order to make the study a comprehensive one, three degrees of semi-rigidity (one fully rigid and the other two semi-rigid), and two frames having different heights are considered. An ensemble of five-time histories of ground motion is included in each type of earthquake. A large number of responses are considered in the study. They include the peak top-story displacement, maximum inter-story drift ratio, peak base shear, total number of plastic hinges, and square root of sum of the squares (SRSS) of the maximum plastic hinge rotations. Results of the study indicate that the nonlinear static analysis provides a fairly good estimate of the peak values of top-story displacements, inter-story drift ratio (for shorter frame), peak base shear and number of plastic hinges; however, the SRSS of maximum plastic hinge rotations in semi-rigid frames are considerably more in the nonlinear static analysis as compared to the nonlinear time history analysis.

유한요소해석을 이용한 강선요트의 국부강도 평가 (Estimation about Local Strength using FE-Analysis for Steel Yacht)

  • 박주신;고재용
    • 해양환경안전학회지
    • /
    • 제11권2호
    • /
    • pp.77-82
    • /
    • 2005
  • 지금까지 국내에서 제작된 요트는 선체의 재질이 FRP로 제작되어 왔으나 FRP는 환경오염 및 해양안전에 관한 법규 규제가 강화되고 있는 국제사회의 인식에 따라 중소형 조선소를 중심으로 강철 재료나 알루미늄 재료들 사용한 선박건조로 변화하고 있는 실정이다. 강선요트의 구조상 강선재료를 주로 사용함으로서 여러 가지 강도적인 측면에 대한 검토가 필요하지만, 소형선박이므로 종강도, 횡강도 부분은 규정에서의 허용 응력치에 안전율(Safe Factor)만을 주어서 설계를 하여도 충분히 안정된 구조를 이를 수가 있다. 그러나, 소형선박에서 가장 문제시되는 것은 국부강도(Local Strength)의 평가이다. 본 구조해석에서는 선수에 작용하는 슬래밍 동작하중 및 선수충격에 의한 선수부의 손상 여부와 선수부의 국부강도 만족 여부를 확인하고, 기관받침(Engine bed) 부분에서의 중량하중과 횡파하중에 대한 검토를 수행하였다.

  • PDF

환승센터내 환승정보서비스를 위한 정보연계 표준화 연구 (A Study on the Standardization of Information Connection for Transfer Information Service in Transfer Center)

  • 배명환;오동섭;이승환;오세창
    • 대한교통학회지
    • /
    • 제29권5호
    • /
    • pp.33-42
    • /
    • 2011
  • 환승센터의 규모가 점차 대형화됨에 따라 대규모 환승센터에서 동적으로 이동하는 이용자의 편의를 고려한 환승정보서비스가 필요하다. 이러한 서비스는 동적으로 이동하는 이용자에게 무선통신이 가능한 개인 휴대단말기(Mobile phone, Smart phone)를 통해 환승정보제공을 가능하게 한다. 특히, Wi-Fi를 이용한 실내위치측위 기술은 실용화 단계로서 GPS와 Wi-Fi를 탑재한 Smart phone을 통해서는 실내외 위치기반 환승정보서비스가 가능하다. 따라서, 본 연구에서는 환승센터에서 환승센터 내부 이용객의 위치를 기반으로 하는 환승정보의 제공과 환승활동을 지원하는 정보제공서비스를 제시하였으며, 이러한 환승정보서비스를 위해 필요한 논리/물리 아키텍처 및 물리적 구성요소의 정보흐름의 제시와 정보연계 표준화 대상을 도출하여 각 표준화 대상에 대한 정보연계 표준안을 제시하였다.