• Title/Summary/Keyword: basaltic andesite

Search Result 35, Processing Time 0.023 seconds

Basaltic Andesite-Siltstone Peperite in the Gyehwari Formation (Cretaceous) (백악기 계화리층 내 현무암질 안산암-실트암 페퍼라이트)

  • Noh, Beyong-Seob;Park, Jae-Moon;Kim, Seung-Bum;Ryang, Woo-Hun
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.33-39
    • /
    • 2009
  • This paper presents the occurrence and characteristics of the basaltic andesite-siltstone peperite in the lower part of the Gyehwari Formation (Cretaceous), Buan-gun, Jeonbuk province, SW Korea. The peperite is associated with tabular basaltic andesite body, concordantly intercalated with red siltstone and silty sandstone interbeds of floodplain facies. Development of the peperite along the upper margin of the andesite and its textural transition from a dispersed blocky type inward into a closely packed type collectively indicate an intrusive origin (?sill) of the andesite. Magma intrusion and subsequent peperite formation suggest an active syndepositional volcanism since the early stage of evolution of the Gyehwa Basin. The andesite is dated at Late Cretaceous (Santonian) by K-Ar whole-rock radiometric method.

Petrological study on the intermediate to mafic lavas distributed in Janggi area (1): General geology and petrochemical characteristics (장기 지역에 분포하는 중성~염기성 용암에 관한 암석학적 연구(1): 일반 지질 및 암석화학적 특징)

  • 박주희;김춘식;김진섭;성종규;김인수;이준동;백인성
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.149-170
    • /
    • 1999
  • The volcanic lavas in the Janggi area are plotted on basalt, basaltic andesite and andesite field (SiO$_2$; 48-61 wt.%) in the TAS diagram and belong to subalkaline series. Nineteen chenmical analyses of lavas show two distinct differentiation trends; tholeiitic and calc-alkaline. Calc-alkaline basaltic andesites composed of plagioclase and two-pyroxenes (cpx, opx) in their phenocrysts. Tholeiitics basaltic lavas can be classified into two sub-types. The one is porphyritic basalts composed of plagioclase, clinopyroxene and olivine phenocryst, and the other is aphyric basalt and more evolved lavas (aphyric basaltic andesite) with the same mineral phases. Incompatible elements and REE patterns show the enrichment of LILE and depletion of HFSE. This characteristics indicate that these lavas are evolved from the magmas related to subduction. Howeverm calc-alkaline basaltic andesite lavas show that slightly higher enrichment of LILE and the depletion of HFSE than those of tholeiitic basaltic lavas. On the tectonic discriminant diagram such as Ba/Th and La/Th ratios, calc-alkaline basaltic andesite lavas belong to orogenic medium to high-K suites, whereas tholeiitic basaltic lavas belong to medium-K suites and MORB. On the other diagram, such as La/Yb vs. Th/Yb, the volcanic lavas in the study area plotted in the field of oceanic arc basalt. Tholeiitic basaltic lavas are located in more prinitive environment than calc-alkaline andesitic lavas.

  • PDF

Miocene Volcanic Rocks Over the Area of Chenonja-bong and Siru-bong, Jinhae (1): Petrography and Petrochemical Characteristics (진해 천자봉-시루봉 일원에 분포하는 마이오세 화산암 (1): 암석기재와 암석화학적 특징)

  • Ryoo, Sam-Hyung;Jeong, Yun-Gi;Lee, Sang-Won;Sung, Jong-Gyu;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.108-131
    • /
    • 2008
  • The Miocene andesite and basalt intruded into and/or extruded on the Cretaceous volcanic and granitic rocks over the area of Chenjabong and Sirubong in the vicinity of Jinhae, southern part of Kyongsang basin. The K-Ar ages of the younger volcanic rocks are from 16 Ma (Sirubong andesite) to 10 Ma (Cheonjabong basalt), which indicate the Miocene volcanism in the outer part of the Tertiary basin in the Korean peninsula. The volcanics are divided into Chenjabong andesite, Cheonjabong basaltic andesite, Sirubong andesite and Cheonjabong basalt. The Cheonjabong andesite is composed of phenocrysts of clinopyroxene and plagioclase ($An_{60{\sim}64}$) and groundmass with lath-like plagioclase ($An_{76{\sim}84}$) and glass. The Cheonjabong basaltic andesite is composed of plagioclase phenocryst ($An_{60{\sim}64}$) with plagioclase lath ($An_{65}$) and glass in groundmass. The Sirubong andesite is only consisted of plagiocalse lath ($An_{64{\sim}68}$) and glass with absence of phonocryst. The Cheonjabong basalt shows typical porphyritic texture with phenocrysts of olivine ($Fo_{69-84}$) and clinopyroxene. The groundmass of the Cheonjabong basalt is composed of microphenocrysts of olivine, clinopyroxene and plagioclase ($An_{66{\sim}71}$) and plagioclase laths ($An_{57{\sim}65}$) showing pillotaxitic and intergranular texture. The Cheonjabong andesite, Cheonjabong basaltic andesite, Sirubong andesite are belong to calc-alkialine but the Cheonjabong basalt is alkaline basalt. By tectonic discrimination diagrams the parental magmas of the volcanic rocks have occurred boundary.

Petrological Study on Basaltic Rocks of the Daljeon-ri Columnar Joint and the Noeseongsan Noerok Site in Pohang, Korea (포항 달전리 주상절리와 뇌성산 뇌록산지의 현무암 비교 분석)

  • Kim, Jae hwan;Yu, Yeong-wan;Jung, Seung-Ho;Kim, Tae-Hyeong;Moon, Dong Hyeok;Kong, Dal-Yong
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.185-194
    • /
    • 2018
  • The basaltic rocks of Daljeon-ri columnar joint (Natural Monuments # 415) and Noeseongsan Noerok site (Natural Monuments # 547) were analysed in order to understand basalt types of two areas. The basaltic rocks of the Pohang Daljeon-ri columnar joint show a typical porphyritic texture containing phenocrysts (olivine and clinopyroxene) and groundmasses composed of clinopyroxene, plagioclase, and opaque minerals,. In contrast, basaltic rocks of Noeseongsan Noerok are characterized by fine-grained groundmass with large phenocrysts of plagioclase. Other analysis such as magnetic susceptibility, X-ray diffraction and X-ray fluorescence also support the petrological differences of two basalt rocks. The Daljeon-ri basaltic rocks are plotted on phonotephrite volcanic rocks of alkaline series in TAS(total alkali silica), and on within plate basalt in Zr-Ti diagram. The Noeseongsan basalts, on the other hand, are plotted on basaltic andesite to andesite of sub-alkaline series in TAS, and on volcanic arc basalt in Zr-Ti diagram. These results indicate that the original mantle materials between two basalt rocks were different each other, which probably originated from the change of a tectonic setting in the southeastern Korean peninsula during the Miocene.

Petrology of the Cretaceous volcanic rocks in Pusan ares, Korea (부산일원에 분포하는 백악기 화산암류의 암석학적 연구(I))

  • 김진섭;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.156-166
    • /
    • 1993
  • The volcanic stratigraphy and geochemistry of the Cretaceous volcanic rocks in the southern part of the Pusan showed that the volcanic rocks of the study area consist of alternating pyroclastic rocks and andesitic lavas, apparently constituting a thick volcanic sequence of a stratovolcano. The andesitic rocks contain augite, plagioclase, and hornblende as phenocrysts. Matrix minerals are augite, magnetite, hornblende, apatite. Mafic minerals, such as chlorite, epidote, sericite, and iron oxides occur as alteration products. Dacitic volcanic breccia and rhyolitic welded ash-flow tuff locally overlie the andesitic rocks. The rocks reported in the previous studies as andesitic breccia and andesite plot in the field of basalt, basaltic andesite, andesite, dacite and rhyolite, based on their chemical compositions. The volcanic rocks of the study area belong to the calc-alkaline series, and the andesitic rocks which are predominant in the area plot to the field of orogenic andesite.

  • PDF

Petrology of the Cretaceous volcanic rocks in northern Yucheon Minor Basin, Korea (북부 유천소분지에 분포하는 백악기 화산암류에 대한 암석학적 연구)

  • Sang Wook Kim;Sang Koo Hwang;Yoon Jong Lee;Jae Young Lee;In Seok Koh
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.27-36
    • /
    • 1998
  • The volcanic piles in the northern Yucheon Minor Basin area are the Hagbong basaltic rocks, the Chaeyaksan basaltic rocks, the Jusasan andesitic rocks, the Unmunsa rhyolitic rocks, and the Tertiary voicanics. Stratigraphically, from the lowermost, (1) the Hagbong basaltic rocks are composed mainly of basaltic tuff with two olivine basalt flows intercalated, (2) the Chaeyagsan basaltic rocks are predominantly in tuffs and agglomerate with 3 basaltic flow interlayers, (3) the Jusasan andesitic rocks consist of thick piles of alternated sequences of 4 andesite flows and 5 andesitic tuffs and tuffaceous sediments and (4) the Unmunsa rhyolitic rocks which embed some rhyolite and obsidian are dominant in tuffs such as ash flow and crystal welded tuff. These volcanics reveal distinguishable characteristics in petrochemistry. In discriminating by major elements, the Hagbong and the Chaeyagsan basaltic rocks are alkaline, whereas the latter is also spilitic. In comparison, the volcanic rocks of the Jusasan andesitic rocks and the Tertiary sequences are characteristically calc-alkaline although their distribution is spatially separated. On the other hand, the variations in immobile trace elements indicate that the Hagbong basaltic rocks range from alkaline to calc-alkaline and from WPB/VAB transition to VAB, whereas the Chaeyagsan basaltic rocks are calc-alkaline WPB/VAB transition type and the two others calc-alkaline VAB. In order to show such a variety in their rock series of the volcanic rocks, the environment during their magma generation, magma rising, and post-eruption alteration could be positively considered.

  • PDF

A Study on the Material Characteristics of Stone Tools Excavated from the Remain Point of Paleolithic Age in Osong Site, Cheongju

  • Kim, Jae Hwan;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.35 no.1
    • /
    • pp.41-49
    • /
    • 2019
  • This study analyzes the material characteristics of stone tools of the Paleolithic period excavated from the Osong site, located at the project site for the creation of the Osong 2nd Life Science Complex, and estimates the provenance of the stone materials. Because the stones had been buried for a long time, their surfaces had become heavily weathered yellow or yellowish-brown, and the magnetic susceptibility values varied from 0 to 15(${\times}10^{-3}SI$). The excavated stone tools were rocks with various magnetic susceptibility values that could not be specified. Five stone tools subjected to destructive analysis were divided into two groups, one with a value of 1-3(${\times}10^{-3}SI$) and the other with a value of 5-9(${\times}10^{-3}SI$), both based on visible characteristics. The results of the thin-section analysis showed that most of the stone tools were basaltic rocks comprising plagioclase, quartz, and pyroxene, and some had iron content as high as 20 wt.%. These findings and the present geological map suggest that the stone tools were not made from the surrounding rocks because there are no areas containing basaltic rocks surrounding Bongsan-ri in Osong-eup. Andesite and tuff are distributed along with basaltic rocks in the Doan-myeon area in Jeongpyeong-gun, Chungcheongbuk-do Province, but the distance from the excavation site is too far. To determine whether this region is actually related to the provenance of the raw rock, it is necessary to conduct additional field surveys and comprehensive and precise analyses.

Petrology of the Cretaceous Volcanic Rocks in the Gyemyeong peak and Janggun peak area, Mt. Geumjeung, Busan (부산 금정산의 계명봉과 장군봉 일대 백악기 화산암류에 관한 암석학적 연구)

  • Kim, Hye-Sook;Kim, Jin-Seop;Moon, Ki-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.1-17
    • /
    • 2009
  • This article carried studies of the petrographical and petrochemical characteristics on the Cretaceous volcanic rocks in the area of Janggun peak and Gyemyeong peak which is located at the northeastern area of Mt. Geumjeong, Busan. The areas are composed of andesitic rock, sedimentary rock, rhyolitic rock, and intrusive hornblende, biotite granites, in ascending order. According to petrochemistry, the major elements show the calc-alkaline rock series ranged medium-K to high-K. With increasing $SiO_2$, $Al_{2}O_{3}$, $Fe_{2}O_{3}$, $TiO_2$ CaO, MgO MnO and $P_{2}O_{5}$ are decreased and $K_{2}O$ and $Na_{2}O$ are increased in the volcanic rocks. The trace element compositions show high LILE/HFSE ratios and negative anomaly of Nb, and REE patterns show enrichments in LREE and (-) anomaly values increase of Eu from the basaltic andesite to andesite facies, therefore the volcanic rocks have typical characteristics of continental margin arc calc-alkaline volcanic rocks, produced in the subduction environment. The volcanic rock show nearly the same patterns in spider and REE diagram. Fractional crystallization of the basaltic magma would have produced the calc-alkaline andesitic magma. And the rhyolitic magma seems to have been evolved from the basaltic andesitic magma with fractional crystallization of plagioclase, pyroxene, hornblende, biotite.

Study on the Geochemical Characteristics of the Mesozoic Volcanic Rocks in Da Hinggan Ling Area, Northeast China (중국 북동부 대흥안령 지역 중생대 화산암류에 대한 암석화학적 특성 연구)

  • Yun, Sung-Hyo;Won, Chong-Kwan;Lee, Moon-Won;Lin, Qiang
    • Journal of the Korean earth science society
    • /
    • v.21 no.1
    • /
    • pp.67-80
    • /
    • 2000
  • We studied petrological and geochemical characteristics of the Mesozoic volcanic rocks in the Da Hinggan Ling area northeast China, and discussed tectonic settings and origin of the Mesozoic volcanic rocks in northeast Asia. Volcanic rocks in Da Hinggan Ling area are composed of alkaline to subalkaline basalt-basaltic andesite-andesite-dacite-rhyolite, showing typical BAR(basalt-andesite-rhyolite) association. However, most of the volcanic rocks are basaltic and rhyolitic in composition, and andesitic rocks are relatively rare, which shows bimodal characteristics. Rb, Ba, Th and other incompatible element contents in the volcanic rocks are enriched, but the contents decrease with increasing the compatibility. REEs are fractionated and REE patterns of volcanic rocks are characterized by a high LILE/HFSE. On the tectonomagmatic discriminant diagram of Hf-Th-Nb, they fall into the fields for subduction-related destructive plate margin basalts and its differentiates. We suggest that the tectonomagmatic setting of Da Hinggan Ling area was located at the continental margin arc related with subduction environment during the Mesozoic time or may be derived from mantle plume contaminated geochemically from subducting slabs, although it is, at present within the Asia continent.

  • PDF

Petrotectonic Setting and Petrogenesis of Cretaceous Igneous Rocks in the Cheolwon Basin, Korea (철원분지 백악기 화성암류의 암석조구조적 위치와 암석성인)

  • Hwang, Sang-Koo;Kim, Se-Hyeon;Hwang, Jae-Ha;Kee, Won-Seo
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.67-87
    • /
    • 2010
  • This article deal with petrotectonic setting and petrogenesis from petrography and chemical analyses of the Cretaceous volcanic and intrusive rocks in the Cheolwon basin. The volcanic rocks are composed of basalts in Gungpyeong Formation, Geumhaksan Andesite, and rhyolitic rocks (Dongmakgol Tuff, Rhyolite and Jijangbong Tuff), and intrusive rocks, Bojangsan Andesite, granite porphyry and dikes. According to petrochemistry, these rocks represent medium-K to high-K basalt, andesite and rhyolite series that belong to calc-alkaline series, and generally show linear compositional variations of major and trace elements with increase in $SiO_2$ contents, on many Harker diagrams. The incompatible and rare earth elements are characterized by high enrichments than MORB, and gradually high LREE/HREE fractionation and sharp Eu negative anomaly with late strata, on spider diagram and REE pattern. Some trace elements exhibit a continental arc of various volcanic arcs or orogenic suites among destructive plate margins on tectonic discriminant diagrams. These petrochemical data suggest that the basalts may have originated from basaltic calc-alkaline magma of continental arc that produced from a partial melt of upper mantle by supplying some aqueous fluids from a oceanic crust slab under the subduction environment. The andesites and rhyolites may have been evolved from the basaltic magma with fractional crystallization with contamination of some crustal materials. Each volcanic rock may have been respectively erupted from the chamber that differentiated magmas rose sequentially into shallower levels equivalenced at their densities.