• Title/Summary/Keyword: barrier membrane

Search Result 276, Processing Time 0.022 seconds

Drug loaded biodegradable membranes for guided tissue regeneration (약물함유 생체분해성 차폐막의 유도조직재생에 관한 연구)

  • Kim, Dong-Kyun;Lee, Seung-Jin;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.192-209
    • /
    • 1995
  • The purpose of this study was to evaluate drug-loaded biodegradable membranes for guided tissue regeneration(GTR). The membranes were made by coating mesh of polyglycolic acid(PGA) with polylactic acid(PLA) containing 10% flurbiprofen or tetracycline. The thickness of membrane was $150{\pm}30{\mu}m$, and the pore size of surface was about $8{\mu}m$ in diameter. The release of drugs from the membrane was measured in vitro. Cytotoxity test for the membrane was performed by gingival fibroblast cell culture, and the tissue response was observed after implant of membrane into the dorsal skin of the rat for 8 wks. Ability to guided tissue regeneration of membranes were tested by measuring new bone in the calvarial defects(5mm in diameter) of the rat for 5 weeks. The amount of flurbiprofen and tetracycline released from membrane were about 30-60% during 7 days. Minimal cytotoxity was observed in the membrane except 20% drug containing membrane. In histologic finding of rat dorsal skin, many inflammatory cells were observed around e-PTFE, polyglactin 910 and PLAPGA membrane after 1 or 2 weeks. PLA-PGA membrane was perforated by connective tissue after 4 or 6 weeks, and divided as a segment at 8 weeks. In bone regeneration guiding potential test, tetracycline loaded membrane was most effective (p

  • PDF

Architecture and Transport Properties of Membranes out of Graphene (그래핀에 기초한 막의 구조와 물질 전달 성질 개관)

  • Buchheim, Jakob;Wyss, Roman M.;Kim, Chang-Min;Deng, Mengmeng;Park, Hyung Gyu
    • Membrane Journal
    • /
    • v.26 no.4
    • /
    • pp.239-252
    • /
    • 2016
  • Two-dimensional materials offer unique characteristics for membrane applications to water technology. With its atomic thickness, availability and stackability, graphene in particular is attracting attention in the research and industrial communities. Here, we present a brief overview of the recent research activities in this rising topic with bringing two membrane architecture into focus. Pristine graphene in single- and polycrystallinity poses a unique diffusion barrier property for most of chemical species at broad ambient conditions. If well designed and controlled, physical and chemical perforation can turn this barrier layer to a thinnest feasible membrane that permits ultimate permeation at given pore sizes. For subcontinuum pores, both molecular dynamics simulations and experiments predict potential salt rejection to envisage a seawater desalination application. Another novel membrane architecture is a stack of individual layers of 2D materials. When graphene-based platelets are chemically modified and stacked, the interplanar spacing forms a narrow transport pathway capable of separation of solvated ions from pure water. Bearing unbeknownst permeance and selectivity, both membrane architecture - ultrathin porous graphene and stacked platelets - offer a promising prospect for new extraordinary membranes for water technology applications.

The factors related with the failure in GBR and GTR technique (차폐막을 이용한 치주조직 및 골조직 유도재생술의 실패요인에 대한 고찰)

  • Yeom, Hey-Ri;Ku, Young;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.1
    • /
    • pp.117-128
    • /
    • 1997
  • Using barrier membrane, guided bone regeneration(GBR) and guided tissue regeneration(GTR) of periodontal tissue are now widely studied and good results were reported. In bone regeneration, not all cases gained good results and in some cases using GTR, bone were less regenerated than that of control. The purpose of this study is to search for the method to improve the success rate of GBR and GTR by examination of the cause of the failure. For these study, rats and beagle dogs were used. In rat study, 5mm diameter round hole was made on parietal bone of the rat and 10mm diameter of bioresorbable membrane was placed on the bone defects and sutured. In 1 ,2, 4 weeks later, the rats were sacrificed and Masson-Trichrome staining was done and inspected under light microscope for guided bone regeneration. In dog study, $3{\times}4mm^2$ Grade III furcation defect was made at the 3rd and 1th premolar on mandible of 6 beagle dogs. The defects were covered by bioresorbable membrane extending 2-3mm from the defect margin. The membrane was sutured and buccal flap was covered the defect perfectly. In 2, 4. 8 weeks later. the animals were sacrificed and undecalcified specimens were made and stained by multiple staining method. In rats. there was much amount of new bone formation at 2 weeks. and in 4 weeks specimen, bony defect was perfectly dosed and plenty amount of new bone marrow was developed. In some cases, there were failures of guided bone regeneration. In beagle dogs, guided tissue regeneration was incomplete when the defect was collapsed by the membrane itself and when the rate of resorption was so rapid than expected. The cause of the failure in GBR and GTR procedure is that 1) the membrane was not tightly seal the bony defects. If the sealing was not perfect, fibrous connective tissue infiltrate into the defect and inhibit the new bone formation and regeneration. 2) the membrane was too tightly attached to the tissue and then there was no space to be regenerated. In conclusion, the requirements of the membrane for periodontal tissue and bone regeneration are the biocompatibility, degree of sealingness, malleability. space making and manipulation. In this animal study. space making for new bone and periodontal ligament, and sealing the space might be the most important point for successful accomplishment of GBR and GTR.

  • PDF

Pathophysiology and protective approaches of gut injury in critical illness

  • Jung, Chang Yeon;Bae, Jung Min
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.1
    • /
    • pp.27-33
    • /
    • 2021
  • The gut is a complex organ that has played an important role in digestion, absorption, endocrine functions, and immunity. The gut mucosal barriers consist of the immunologic barrier and nonimmunologic barrier. During critical illnesses, the gut is susceptible to injury due to the induction of intestinal hyperpermeability. Gut hyperpermeability and barrier dysfunction may lead to systemic inflammatory response syndrome. Additionally, gut microbiota are altered during critical illnesses. The etiology of such microbiome alterations in critical illnesses is multifactorial. The interaction or systemic host defense modulation between distant organs and the gut microbiome is increasingly studied in disease research. No treatment modality exists to significantly enhance the gut epithelial integrity, permeability, or mucus layer in critically ill patients. However, multiple helpful approaches including clinical and preclinical strategies exist. Enteral nutrition is associated with an increased mucosal barrier in animal and human studies. The trophic effects of enteral nutrition might help to maintain the intestinal physiology, prevent atrophy of gut villi, reduce intestinal permeability, and protect against ischemia-reperfusion injury. The microbiome approach such as the use of probiotics, fecal microbial transplantation, and selective decontamination of the digestive tract has been suggested. However, its evidence does not have a high quality. To promote rapid hypertrophy of the small bowel, various factors have been reported, including the epidermal growth factor, membrane permeant inhibitor of myosin light chain kinase, mucus surrogate, pharmacologic vagus nerve agonist, immune-enhancing diet, and glucagon-like peptide-2 as preclinical strategies. However, the evidence remains unclear.

Preparation of Alumina Sol Coated BOPP Composites and Their Gas Permeation Characteristics (Alumina Sol을 코팅한 BOPP 복합체의 제조 및 기체 투과 특성)

  • Hong, Seong-Uk;Oh, Jae-Won;Ko, Young-Deok;Song, Ki-Chang
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • Sol-gel process is relatively simple, easy to use, cheap to install, and results in thin coating layers with superior physical and gas barrier properties. Films coated by the sol-gel process can be used as insulating films or packaging films for foods, chemicals, drugs, and beverages, etc. In this study, alumina sol was synthesized from aluminum isopropoxide and silane coupling agent was added to make coating solutions. In addition, biaxially oriented polypropylene (BOPP) was coated using several alumina sol solutions and their oxygen permeabilities were measured. The experimental results indicate that in the best case, the oxygen permeability of coated film was reduced by 85% compared to that of pure BOPP.

Fabrication and application of post surgical anti-adhesion barrier using bio-compatible materials (생체 적합성 재료를 이용한 수술후 유착 방지막의 제작과 응용)

  • Park S.H.;Kim H.C.;Yang D.Y.;Kim T.K.;Park T.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.203-204
    • /
    • 2006
  • Studies on some biodegradable polymers and other materials such as hydrogels have shown the promising potential for a variety of surgical applications. Postoperative adhesion caused by the natural consequence of surgical wound healing results in problems of the repeated surgery. Recently, scientists have developed absorbable anti-adhesion barriers that can protect a tissue from adhesion in case they are in use; however, they are dissolved when no longer needed. Although these approaches have been attempted to fulfill the criteria for adhesion prevention, none can perfectly prevent adhesions in all situations. Overall of this work, a new method to fabricate an anti-adhesion membrane using biodegradable polymer and hydrogel has been developed. The ideal barrier for preventing postoperative adhesion would have the following properties; it should be (i) resorbable (ii) non-reactive (iii) easy to apply (iv) capable of being fixed in position. In order to fulfill these properties, we adopted solid freeform fabrication method combined with surface modification which includes the hydrogel coating, therefore, inner or outer structure can be controlled and the property of anti adhesion can be improved.

  • PDF

Fabrication of the alumina membrane with nano-sized pore array using the thin film aluminum (박막 알루미늄을 이용한 나노미터 크기의 미세기공 형성)

  • Lee, Byoung-Wook;Lee, Jae-Hong;Lee, Eui-Sik;Kim, Chang-Kyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.120-122
    • /
    • 2005
  • An alumina membrane with nano-sized pore array by anodic oxidation using thin film aluminum deposited on silicon wafer was fabricated. It is important that the sample prepared by metal deposition method has a flat aluminum surface and a good adhesion between the silicon wafer and the thin film aluminum. The oxidation time was controlled by observation of current variation. While the oxalic acid with 0.2M was used for low voltage anodization under 100V, the chromic acid with 0.1M was used for high voltage anodization over 100V. The nano-sized pores with diameter of 60~120nm was obtained by low voltage anodization of 40~90V and those of 200~300nm was obtained by high voltage anodization of 120~160V. Finally, the sample was immersed to the phosphoric acid with 0.1M concentration to etching the barrier layer. The sample will be applied to electronic sensors, field emission display, and template for nano-structure.

  • PDF

Transdermal Delivery of Ethinylestradiol UsingEthylene-vinyl Acetate Membrane

  • Shin, Sang-Chul;Byun, Soo-Young
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.3
    • /
    • pp.53-59
    • /
    • 1995
  • Ethinylestradiol (EE)-containing matrix was fabricated with ethylene-vinyl acetate(EVA) copolymer to control the release of the drug, Effect of addition of PEG 400 as receptor solution, the stripping of skin and Azone pretreatment on skin on the permeation of EE through the excised mouse skin was also studied. The permeation rate of EE through the excised mouse skin was affected by the PEG 400 volume fraction. The Azone pretreatment on skin didn't affect on the steady state flux, however, the lag time was shortened. The permeation rate of EE through the stripped skin was much larger than that through the whole skin. It showed that the stratum corneum acts as a barrier of skin permeation. The fact that there is little difference in EE permeation between the intact skin and the stripped skin with EVA membrane shows the permeation of EE through the mouse skin is mainly controlled by the membrane.

  • PDF

Finite Element Analysis of the Corrugated Membrane of LNG Storage Tank for Its Geometric Design (LNG 저장탱크용 멤브레인 형상설계를 위한 유한요소해석)

  • 김성원;이성우;이중남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.620-624
    • /
    • 1997
  • Corrugated membranes which are used as a means of liquid- and gas-sealing for a LNG storage tank and provide one of the most reliable primary barrier are the main component of in-ground membrane types for the assurance of high safety. It absorbs large thermal and mechanical deformations caused by ultra low temperature of LNG, -162 .deg.c, the cryogenic liquid and mechanical deformations caused by was carried out on crossing corrugation by commercial F.E code, ANSYS. This paper presents some of results in stress analysis of membranes performed for the purpose to investigate the strength of existing membrane for LNG storage tank designed by IHI,MHI, KHI and KGC expect for Technigaz eariy published. Based on these analytical studies,design criteria were estabilished and SHI original membranes having a high level of safety and fitting to larger capacities were developed.

  • PDF

In Vitro Study Of Salivary Bacterial Adherence On e-PTFE Membrane According To Periodontal Status. (치주조직 상태에 따른 e-PTFE막 부착에 관한 연구)

  • Ju, Jae-Ig;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.117-132
    • /
    • 1996
  • The purpose of this study was to evaluate the bacterial adherence on e-PTFE membrane immersed in whole saliva from subjects with different periodontal status. Experiment involved 3 subject groups: 5 persons with healthy periodontium(probing depth below 3mm and no signs of gingival inflammation including bleeding on probing), 10 patients with gingivitis(probing depth below 3mm and apparent signs of gingival inflammation), and 10 patients with advanced periodontitis(probing depth over 7mm and apparent signs of gingival inflammation). Each disease group was included before and after scaling and root planing treatment. After obtaining whole saliva from each subject, e-PTFE membrane(Gore-Tex periodontal membrane : $GTPM^{(R)}$, W.L. Gore & Associates, Flagstaff, USA) specimens were immersed at room temperature in the saliva aliqouts for 1, 3, 7 days. The weight between pre - and post - immersion in saliva was measured with the analytical balance and the difference was recorded. The specimens were processed for SEM observation. The bacterial adherence on the membrane specimens was evaluated using the scanning electron microscope images. The obtained results were as follows : 1. There was no difference in the weight of bacteria adherent to e-PTFE membrane specimens according to the periodontal status and the immersion periods. 2. As the exposure time to saliva increased, the bacterial adherence to the membrane specimen significantly increased in all groups(P<0.005). 3. As the severity of periodontal disease increased, the bacterial adherence to the membrane specimens significantly increased(p<0.001). 4. After scaling and root planing, the bacterial adherence to the membrane specimens significantly decreased in gingivitis and periodontitis patient group(P<0.001). These results suggest that bacterial contamination on exposed barrier membrane surface be reduced through improvement of periodontal status and oral health environment before and after GTR procedure for the successful outcome.

  • PDF