• Title/Summary/Keyword: barrier films

Search Result 492, Processing Time 0.023 seconds

Formation and Chemical Dissolution Behaviors of Nano Porous Alumina (나노 기공성 알루미나의 생성과 화학적 용해 거동)

  • Oh, Han-Jun;Jeong, Yong-Soo;Chi, Choong-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.5
    • /
    • pp.217-223
    • /
    • 2010
  • For an application as templates of high performance with proper pore size and shape, porous anodic alumina films were prepared by anodization in oxalic acid, and formation behaviors of anodic alumina layer as well as dissolution process in acid solution have been investigated. The surface characteristics on anodic alumina layer were shown to be dependent on the fabrication parameters for anodization. For the dissolution behaviors of anodic alumina, the thickness of the barrier-type alumina layer decreased linearly with the rate of 0.98 nm/min in $H_3PO_4$ solution at $30^{\circ}C$. The changes of the anodic alumina layers were analyzed by SEM and TEM.

Effects of Package Environment on Keeping Quality during Storage in Cabbage and Broccoli (Cabbage 와 Broccoli 의 저장중 품질유지에 미치는 포장환경의 영향)

  • ;R.C.Lindsay
    • Food Science and Preservation
    • /
    • v.7 no.1
    • /
    • pp.33-37
    • /
    • 2000
  • Effects on keeping quality according to the different package environment in cabbage and brccoli were studied. Opened 2 mil LDPE (low density polyethylene) sealed 4 mil LDPE and BA(barrier polyethylene) were used as package films. Weight loss was markedly in opened 2 mil LDPE in cabbage and broccoli as 6 and 28%, respectively. Carbon dioxide was higher in seal-packaging cabbage and broccoli with BA held at 4 $^{\circ}C$ was above 15 and 31% within 15 days, respectively, while oxygen content was depleted to 2% or less after 10 days. The main difference between volatile sulfur-containing compounds produced from cabbage and broccoli were the relative quantities and rates of production of hydrogen sulfide, carbonyl sulfide, methanethiol and dimethyl disulfide in opened 2 mil LDPE , sealed 4 mil LDPE and barrier bags during storage.

  • PDF

Flexible Ultra-high Gas Barrier Substrate for Organic Electronics

  • Yan, Min;Erlat, Ahmet Gun;Zhao, Ri-An;Scherer, Brian;Jones, Cheryl;Smith, David J.;McConnelee, Paul A.;Feist, Thomas;Duggal, Anil
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.445-446
    • /
    • 2007
  • The use of plastic substrates enables new applications, such as flexible display devices, and other flexible electronic devices, using low cost, rollto-roll (R2R) fabrication technologies. One of the limitations of polymeric substrate in these applications is that oxygen and moisture rapidly diffuse through the material and subsequently degrade the electro-optical devices. GE Global Research (GEGR) has developed a plastic substrate technology comprised of a superior high-heat polycarbonate (LEXAN(R)) substrate film and a unique transparent coating package that provides the ultrahigh barrier (UHB) to moisture and oxygen, chemical resistance to solvents used in device fabrications, and a high performance transparent conductor. This article describes the coating solutions for polycarbonate (LEXAN(R)) films and its compatibility with OLED device fabrication processes.

  • PDF

Reliability Evaluation of Atomic layer Deposited Polymer / Al2O3 Multilayer Film for Encapsulation and Barrier of OLEDs in High Humidity and Temperature Environments (OLED Barrier와 Encapsulation을 위한 원자층 증착 Polymer / Al2O3 다층 필름의 온습도 신뢰도 평가 분석)

  • Lee, Sayah;Song, Yoon Seog;Kim, Hyun;Ryu, Sang Ouk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.1-4
    • /
    • 2017
  • Encapsulation of organic based devices is essential issue due to easy deterioration of organic material by water vapor. Atomic layer deposition (ALD) is a promising solution because of its low temperature deposition and quality of the deposited film. Moisture permeation has a mechanism to pass through defects, Thin Film Encapsulation using inorganic / organic / inorganic hybrid film has been used as promising technology. $Al_2O_3$ / Polymer / $Al_2O_3$ multilayer film has shown excellent environmental protection characteristics despite of thin thicknesses of the films.

  • PDF

Electrical Insulation Design of a 154 kV Class HTS Transformer (154 kV급 고온초전도 변압기의 전기절연 설계)

  • Cheon, H.G.;Kwag, D.S.;Choi, J.H.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.53-56
    • /
    • 2007
  • In the response to the demand for electrical energy, much effort was given to develop and commercialize high temperature superconducting (HTS) power equipment has been made around the world. Especially, a HTS transformer is one of the most promising devices. Recently, Korea Polytechnic University and Gyeongsang National University are developing a power distribution and transmission class HTS transformer that is one of the 21st century superconducting frontier projects in Korea. For the development of 154 kV class HTS transformer, the cryogenic insulation technology should be established. We have been analyzed insulation composition and investigated electrical characteristics such as the breakdown of $LN_2$, barrier, kapton films, and the surface flashover of FRP in $LN_2$. Furthermore, we are going to compare with measured each value and apply the value to the most suitable insulating design of the HTS transformer.

Preparation and Electrical Properties of $(Ba_{0.5}, Sr_{0.5})Tio_3$Thin Films by RF Magnetron Sputtering (RF Magnetron Sputtering에 의한 $(Ba_{0.5}, Sr_{0.5})Tio_3$박막의 제조와 전기적 특성에 관한 연구)

  • Park, Sang-Sik;Yun, Son-Gil
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.453-458
    • /
    • 1994
  • $(Ba_{0.5}Sr_{0.5)/TiO_3$(BST) thin films were prepared for the application of 256 Mb DRAM by RF magnetron sputtering. The crystallinity of BST thin films increased with increasing deposition tempera lure. The composition of thin films was $(Ba_{0.48}Sr_{0.48)/TiO_{2.93}$ Pt/Ti barrier layer suppressed the diffusion of Si into BST layer. The films showed a dielectric constant of 320 and a dissipation factor of 0.022 at 100 kHz. the change of capacitance of the films with applied voltage was small, showing paraelectric property. The charge storage density and leakage current density were 40fC/$\mu \textrm{m}^{2}$ and 0.8$\mu A/\textrm{cm}^2$, respectively at a field of 0.15 MV/cm. The BST films obtained by RF magnetron sputtering appeared to be potential thin film capacitors for 256 Mb DRAM application.

  • PDF

Prediction of the optical properties of $TiO_2$/Ag/$TiO_2$ films using transfer matrix and comparisions with real transmittance measured on the sputter-deposited films (Transfer Matrix를 사용하여 예측한 $TiO_2$/Ag/$TiO_2$ 박막의 광학적 성질 및 스퍼터 증착된 박막과의 특성 비교)

  • Kim, Jin-Il;Kim, Jin-Hyeon;Kim, Yeong-Hwan;O, Tae-Seong
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.140-148
    • /
    • 1995
  • Optical properties of $TiO_{2}$. Ag filrns and $TiO_{2}/Ag/TiO_{2}$ multilayer filrns with different thickness were predicted using the transfer matrix, and these results were compared with real transmittance curves of the sputterdeposited films. With the complex refractive indices, it was possible to predict transmittance characteristics which were close to real data for $TiO_{2}$ and Ag films. Due to the diffusion and agglomeration of Ag during $TiO_{2}$ deposition, optical properties of the sputterdeposited $TiO_{2}/Ag/TiO_{2}$ films were found to be very different from the transmittance curves predicted using the transfer matrix. Using deposition of 4nm-thick or 6nm-thick TI layers as a diffusion barrier, however, the transmittance curves of $TiO_{2}/Ti/Ag/Ti/TiO_{2}$ five-layer films became similar to ones predicted for $TiO_{2}/Ag/TiO_{2}$ threeiayer films.

  • PDF

Enhancement of Methanol Gas Sensitivity of Cu Intermediate ITO Film Gas Sensors

  • Shin, Chang-Ho;Chae, Joo-Hyun;Kim, Yu-Sung;Jeong, Cheol-Woo;Kim, Dae-Il
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.267-270
    • /
    • 2010
  • Sn doped $In_2O_3$ (ITO) and ITO/Cu/ITO (ICI) multilayer films were prepared on glass substrates with a reactive radio frequency (RF) magnetron sputter without intentional substrate heating, and then the influence of the Cu interlayer on the methanol gas sensitivity of the ICI films were considered. Although both ITO and ICI film sensors had the same thickness of 100 nm, the ICI sensors had a sandwich structure of ITO 50 nm/Cu 5 nm/ITO 45 nm. The ICI films showed a ten times higher carrier density than that of the pure ITO films. However, the Cu interlayer may also have caused the decrement of carrier mobility because the interfaces between the ITO and Cu interlayer acted as a barrier to carrier movement. Although the ICI films had two times a lower mobility than that of the pure ITO films, the ICI films had a higher conductivity of $3.6{\cdot}10^{-4}\;{\Omega}cm$ due to a higher carrier density. The changes in the sensitivity of the film sensors caused by methanol gas ranging from 50 to 500 ppm were measured at room temperature. The ICI sensors showed a higher gas sensitivity than that of the ITO single layer sensors. Finally, it can be concluded that the ICI film sensors have the potential to be used as improved methanol gas sensors.

Study on diffusion barrier properties of Tantalum films deposited by substrate bias voltage (Ta 확산 방지막 특성에 미치는 기판 바이어스에 관한 연구)

  • ;;Minoru Isshiki
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.3
    • /
    • pp.174-181
    • /
    • 2003
  • Ta diffusion barriers have been deposited on Si (100) substrate by applying a negative substrate bias voltage. The effect of the substrate bias voltage on the properties of the Ta films was investigated. In the case of the Ta films deposited without the substrate bias voltage, a columnar structure and small grains were observed distinctly, and the electrical resistivity of the deposited Ta films was very high (250 $\mu\Omega$cm). By applying the substrate bias voltage, no clear columnar structure and grain boundary were observed. The resistivity of the Ta films decreased remarkably and at a bias voltage of -125 V, reaching a minimum value of 40 $\mu\Omega$cm, which is close to that of Ta bulk (13 $\mu\Omega$cm). The thermal stability of Cu(100 mm)/Ta(50 mm)/Si structures was evaluated after annealing in H2 atmosphere for 60 min at various temperatures. The Ta films deposited by applying the substrate bias voltage were found to be stable up to $600^{\circ}C$, while the Ta films deposited without the substrate bias voltage degraded at $400^{\circ}C$.

Electrical and Mechanical Properties of Indium-tin-oxide Films Deposited on Polymer Substrate Using Organic Buffer Layer

  • Han, Jeong-In;Lee, Chan-Jae;Rark, Sung-Kyu;Kim, Won-Keun;Kwak, Min-GI
    • Journal of Information Display
    • /
    • v.2 no.2
    • /
    • pp.52-60
    • /
    • 2001
  • The electrical and mechanical properties in indium-tin-oxide films deposited on polymer substrate were examined. The materials of substrates were polyethersulfone (PES) which have gas barrier layer and anti-glare coating for plastic-based devices. The experiments were performed by rf-magnetron sputtering using a special instrument and buffer layers. Therefore, we obtained a very flat polymer substrate deposited ITO film and investigated the effects of buffer layers, and the instrument. Moreover, the influences of an oxygen partial pressure and post-deposition annealing in ITO films deposited on polymer substrates were clarified. X-ray diffraction observation, measurement of electrical property, and optical microscope observation were performed for the investigation of micro-structure and electro-mechanical properties, and they indicated that as-deposited ITO thin films are amorphous and become quasi-crystalline after adjusting oxygen partial pressure and thermal annealing above $180^{\circ}C$. As a result, we obtained 20-25 ${\Omega}/sq$ of ITO films with good transmittance (above 80 %) of oxygen contents with under 0.2 % and vacuum annealing. Furthermore, using organic buffer layer, we obtained ITO films which have a rather high electrical resistance (40-45 ${\Omega}/sq$) but have improved optical (more than 85 %) and mechanical characteristics compared to the counterparts. Consequently, a prototype reflective color plastic film LCD was fabricated using the PES polymer substrates to confirm whether the ITO films could be realized in accordance with our experimental results.

  • PDF