• Title/Summary/Keyword: barrier film

Search Result 658, Processing Time 0.03 seconds

Development of Chemical Vapor Sampler for Man-in-Simulant Test(MIST) (화생방 개인보호체계 시험평가용 화학증기 흡착 샘플러의 개발)

  • Jung, Hyunsook;Lee, Kyoo Won;Kah, Dongha;Jung, Heesoo;Ko, Chung Ah;Choi, Geun Seob;Park, Hyen Bae;Lee, Hae Wan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.387-394
    • /
    • 2015
  • We have recently developed a cost-effective and pouch-type chemical vapor sampler which consists of a selectively permeable high density polyethylene(HDPE) membrane, aluminum/nylon barrier film, and adsorbents. Since the sampler mimics the actual adsorption process that occurs when the skin is exposed to chemical vapors, it can be applied to man-in-simulant test(MIST) to determine the protective capability of individual protective ensembles for chemical warfare agents. In this study, we describe the manufacturing process of samplers and results for performance testing on MIST. Methyl salicylate(MeS) is used to simulate chemical agent vapor and the vapor sampler was used to monitor chemical concentration of MeS inside the protective suit system while worn. Values of protection factors(PF) were also analyzed to provide an indication of the protection level of the suit system evaluate by MIST. The results obtained by home-made samplers(ADD samplers) and commercially avaliable ones(Natick samplers) showed no significant differences.

Role of oxidant on polishing selectivity in the chemical mechanical planarization of W/Ti/TiN layers (W/Ti/TiN막의 연마 선택비 개선을 위한 산화제의 역할)

  • Lee, Kyoung-Jin;Seo, Yong-Jin;Park, Chang-Jun;Kim, Gi-Uk;Kim, Sang-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.33-36
    • /
    • 2003
  • Tungsten is widely used as a plug for the multi-level interconnection structures. However, due to the poor adhesive properties of tungsten (W) on $SiO_2$ layer, the Ti/TiN barrier layer is usually deposited onto $SiO_2$ for increasing adhesion ability with W film. Generally, for the W-CMP (chemical mechanical polishing) process, the passivation layer on the tungsten surface during CMP plays an important role. In this paper, the effect of oxidants controlling the polishing selectivity of W/Ti/TiN layer were investigated. The alumina $(Al_2O_3)$ abrasive containing slurry with 5 % $H_2O_2$ as the oxidizer, was studied. As our preliminary experimental results, very low removal rates were observed for the case of no-oxidant slurry. This low removal rate is only due to the mechanical abrasive force. However, for Ti and TiN with 5 % $H_2O_2$ oxidizer, different removal rate was observed. The removal mechanism of Ti during CMP is mainly due to mechanical abrasive, whereas for TiN, it is due to the formation of metastable soluble peroxide complex.

  • PDF

Formation of Ni-W-P/Cu Electrodes for Silicon Solar Cells by Electroless Deposition (무전해 도금을 이용한 Si 태양전지 Ni-W-P/Cu 전극 형성)

  • Kim, Eun Ju;Kim, Kwang-Ho;Lee, Duk Haeng;Jung, Woon Suk;Lim, Jae-Hong
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.1
    • /
    • pp.54-61
    • /
    • 2016
  • Screen printing of commercially available Ag paste is the most widely used method for the front side metallization of Si solar cells. However, the metallization using Ag paste is expensive and needs high temperature annealing for reliable contact. Among many metallization schemes, Ni/Cu/Sn plating is one of the most promising methods due to low contact resistance and mass production, resulting in high efficiency and low production cost. Ni layer serves as a barrier which would prevent copper atoms from diffusion into the silicon substrate. However, Ni based schemes by electroless deposition usually have low thermal stability, and require high annealing process due to phosphorus content in the Ni based films. These problems can be resolved by adding W element in Ni-based film. In this study, Ni-W-P alloys were formed by electroless plating and properties of it such as sheet resistance, resistivity, specific contact resistivity, crystallinity, and morphology were investigated before and after annealing process by means of transmission line method (TLM), 4-point probe, X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM).

Facile Fabrication of Chemical Vapor Samplers with Various Adsorbents for Man-in-Simulant Test(MIST) (Man-in-Simulant Test(MIST) 실험을 위한 다양한 흡착제의 화학증기 흡착용 샘플러 제작)

  • Jung, Hyunsook;Lee, Kyoo Won;Choi, Geun Seob;Park, Myungkyu;Lee, Haewan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.129-134
    • /
    • 2014
  • We have developed a cost-effective and facile method to manufacture a pouch-type chemical vapor sampler. Originally, the sampler was developed by U. S. Army Natick Soldier Research, Development, and Engineering Center(NSRDEC) to determine the protective capability of individual protective ensembles or Man-in-Simulant Test (MIST). They used a selectively permeable high density polyethylene(HDPE) as front membrane and aluminum/ Nylon barrier film as an impermeable back sheet in order to mimic the actual adsorption process that occurs when the skin is exposed to chemical weapons. However, it costs over twenty dollars per sampler and the minimum of quantity is 2500 per order. In addition, it is inconvenient to employ a variety of adsorbents into the sampler, which could prevent MIST researchers to do various tests for development of MIST methodologies. Here, we report the simple method to manufacture the sampler in a laboratory scale. All the materials we used are easily obtainable and inexpensive. In addition, all the procedures we perform are generally known. We used methyl salicylate(MeS) vapor to be adsorbed into the sampler and employed several different adsorbents to evaluate the performance of samplers. The results obtained by home-made samplers and commercially avaliable one showed no significant differences. Also, MeS vapor was selectively adsorbed into the sampler depending on adsorbents. We conclude that home-made samplers are capable of collecting any kind of chemical vapor for a variety of purposes.

Characteristics of Coating Films on Hot-Dipped Aluminized Steel Formed by Plasma Electrolytic Oxidation Process at Different Current Densities (PEO 전류밀도 조건에 따른 알루미늄도금 강재상 산화코팅막의 특성)

  • Choi, In-Hye;Lee, Hoon-Seung;Lee, Myeong-Hoon
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.5
    • /
    • pp.366-372
    • /
    • 2017
  • Plasma electrolytic oxidation(PEO) has attracted attention as a surface treatment which has high wear resistance and corrosion resistance. PEO is generally considered as cost-effective, environmentally friendly and superior in terms of coating performance. Most of studies about the PEO processes have been applied to light metals such as Al and Mg. Because the strength of Al and Mg is weaker than that of steel, there is a limit to the application. In this study, PEO process was used to form oxide coatings on Hot dipped aluminized(HDA) steel and the characteristics of the coating film according to the PEO current density were studied. The morphology was observed by SEM and component was analyzed by using EDS. The corrosion behaviors of PEO coating films were estimated by exposing salt spray test at 5 wt.% NaCl solution and measuring polarization curves in deaerated 3 wt.% NaCl solution. With the increase of PEO process current density, the pore size of the coating surface and the thickness of coating increased. It was confirmed that no Fe component was present on the coating surface. PEO coating films obviously showed good corrosion resistance compared with HDA. It is considered that the PEO coating acts as a barrier to protect the base material from external factors causing corrosion.

Electrical Characterization of Nanoscale $Au/TiO_2$ Schottky Diodes Probed with Conductive Atomic Force Microscopy

  • Lee, Hyunsoo;Van, Trong Nghia;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.290.1-290.1
    • /
    • 2013
  • The electrical characterization of Au islands on TiO2 at nanometer scale (as a Schottky nanodiode) has been studied with conductive atomic force microscopy in ultra-high vacuum. The diverse sizes of the Au islands were formed by using self-assembled patterns on n-type TiO2 semiconductor film using the Langmuir-Blodgett process. Local conductance images showing the current flowing through the TiN coated AFM probe to the surface of the Au islands on TiO2 was simultaneously obtained with topography, while a positive sample bias is applied. The boundary of the Au islands revealed a higher current flow than that of the inner Au islands in current AFM images, with the forward bias presumably due to the surface plasmon resonance. The nanoscale Schottky barrier height of the Au/TiO2 Schottky nanodiode was obtained by fitting the I-V curve to the thermionic emission equation. The local resistance of the Au/TiO2 nanodiode appeared to be higher at the larger Au islands than at the smaller islands. The results suggest that conductive atomic force microscopy can be used to reveal the I-V characterization of metal size dependence and the electrical effects of surface plasmon on a metal-semiconductor Schottky diode at nanometer scale.

  • PDF

Impact of Filler Aspect Ratio on Oxygen Transmission and Thermal Conductivity using Hexagonal Boron Nitride-Polymer Composites (필러 네트워크 형성 및 배향이 복합소재 열전도도와 산소투과도에 미치는 영향 고찰)

  • Shin, Haeun;Kim, Chae Bin
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.63-69
    • /
    • 2021
  • In order to develop an integrated heat dissipating material and gas barrier film for electronics, new polymer was designed and synthesized for preparing composites containing hexagonal boron nitride (hBN) filler. Depending on the size and content of the hBN filler, both thermal conductivity and oxygen transmission rate can be adjusted. The composite achieved a high thermal conductivity of 28.0 W·m-1·K-1 at most and the oxygen transmission rate was decreased by 62% compared to that of the filler free matrix. Effective filler aspect ratios could be estimated by comparing thermal conductivity and oxygen transmission rate with values predicted by theoretical models. Discrepancy on the aspect ratios extracted from thermal conductivity and oxygen transmission rate comparisons was also discussed.

Influence of Oxygen Annealing on Temperature Dependent Electrical Characteristics of Ga2O3/4H-SiC Heterojunction Diodes (산소 후열처리가 Ga2O3/4H-SiC 이종접합 다이오드의 온도에 따른 전기적 특성에 미치는 영향 분석)

  • Chung, Seung Hwan;Lee, Hyung Jin;Lee, Hee Jae;Byun, Dong Wook;Koo, Sang Mo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.138-143
    • /
    • 2022
  • We analyzed the influence of post-annealing on Ga2O3/n-type 4H-SiC heterojunction diode. Gallium oxide (Ga2O3) thin films were deposited by radio frequency (RF) sputtering. Post-deposition annealing at 950℃ in an Oxygen atmosphere was performed. The material properties of Ga2O3 and the electrical properties of the diodes were investigated. Atomic Force Microscopy (AFM), X-Ray Diffraction and Scanning Electron Microscope (SEM) images show a significant increase in the roughness and crystallinity of the O2-annealed films. After Oxygen annealing X-ray Photoelectron Spectroscopy (XPS) shows that the atomic ratio of oxygen increases which is related to a decrease in oxygen vacancy within the Ga2O3 film. The O2-annealed diodes exhibited higher on-current and lower leakage current. Moreover, the ideality factor, barrier height, and thermal activation energy were derived from the current-voltage curve by increasing the temperature from 298 - 434K.

Effect of Modified Atmosphere Packaging on Quality Preservation of Rice Cake (Ddukgukdduk) (떡국 떡의 품질유지에 미치는 변형기체포장(MAP) 효과)

  • Jung, Soo Yeon;An, Duck Soon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • Packages of different atmospheres (air (control), 100% CO2, vacuum, and vacuum + O2 absorber) were prepared for 0.4 kg rice cake (ddukgukdduk) using gas-barrier plastic film and stored at 10℃ for 11 days. The stored products were evaluated in their packages atmosphere, total aerobic bacteria, yeast and molds, texture and sensory quality during storage period. In the air package, the O2 concentration decreased from initial 21% to 16% on storage 4 days and the CO2 concentration increased to 23% on storage of 11 days, which resulted from the growth of microorganisms. CO2 concentration decreased from initial 98% to 36% on storage 11 days in the 100% CO2 package. It is reasoned that CO2 was dissolved into the product reducing the volume of the package. Vacuum and vacuum +O2 absorber package maintained shrunk vacuum condition until 11 days of storage. Total aerobic bacteria count increased significantly in the control package (6.41 log (cfu/g) after 11 days) compared to the 100% CO2 package (4.96 log (cfu/g) after 11 days). Yeast and molds were 6.66 in control package, 3.43 in 100% CO2 package, 4.66 in vacuum package, and 3.78 in vacuum + O2 absorber package after 11 days. There was no significant difference between control and the other treatments for the texture of the stored products. Sensory quality was the worst in control package on the storage of 8 days. All treatment groups except control improved the quality preservation, but vacuum and vacuum + O2 absorber packages suffered from cracking of the product. Thus 100% CO2 flushing is suggested as a desired packaging condition.

Temperature-Dependent Self-Powered Solar-Blind Photodetector Based on Ag2O/-Ga2O3 Heterojunction

  • Taejun Park;Sangbin Park;Joon Hui Park;Ji Young Min;Yusup Jung;Sinsu Kyoung;Tai Young Kang;Kyunghwan Kim;You Seung Rim;Jeongsoo Hong
    • Nanomaterials
    • /
    • v.12 no.17
    • /
    • pp.2983-2998
    • /
    • 2022
  • In this study, a high-photoresponsivity self-powered deep ultraviolet (DUV) photodetector based on an Ag2O/β-Ga2O3 heterojunction was fabricated by depositing a p-type Ag2O thin film onto an n-type β-Ga2O3 layer. The device characteristics after post-annealing at temperatures ranging from 0 to 400 ℃ were investigated. Our DUV devices exhibited typical rectification characteristics. At a post-annealing temperature of 300 ℃, the as-fabricated device had a low leakage current of 4.24 × 10-11 A, ideality factor of 2.08, and a barrier height of 1.12 eV. Moreover, a high photoresponsivity of 12.87 mA/W was obtained at a 100 µW/cm2 light intensity at a 254 nm wavelength at zero bias voltage, the detectivity was 2.70 × 1011 Jones, and the rise and fall time were 29.76, 46.73 ms, respectively. Based on these results, the Ag2O/β-Ga2O3 heterojunction photodetector operates without an externally applied voltage and has high responsivity, which will help in the performance improvement of ultraviolet sensing systems.