• Title/Summary/Keyword: baroplastic

Search Result 4, Processing Time 0.02 seconds

Baroplastic Process of PBA/PS/Si Blend Prepared by Heterocoagulation (Heterocoagulation으로 제조된 PBA/PS/Si 블렌드의 압력가소성)

  • Lee, Kwang-Hee;Ryu, Sang-Woog
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.727-732
    • /
    • 2012
  • Baroplastic poly(butyl acrylate) (PBA)/polystyrene (PS) blends were prepared by mixing PBA and PS emulsions synthesized by cationic and anionic surfactant, respectively. Interestingly, the heterocoagulation of nanoparticles have found to be affected strongly by emulsion concentration but the blends have been prepared with almost same compositions regardless of the amount of reactants. Utilizing this method, PBA/PS/Si hybrid nano-blends were prepared successfully via electrostatic attraction forces between PBA, PS and silica nanoparticles. The hybrid nano-blend having 2 or 5 wt% of silica was then processed to a semi-transparent film at $25^{\circ}C$ under 13.8 MPa for 10 min, which showed 3.0 MPa of tensile strength and 25 MPa of elastic modulus. Therefore, the heterocoagulation technique can be used for preparing baroplastics with uniform compositions of polymer and silica nanoparticles.

Blending of Silica Nanoparticles with PBA/PS Core-Shell Baroplastic Polymers (PBA/PS 코어-셀 압력가소성 고분자와 실리카 나노입자의 블렌딩)

  • Kim, Min-Jeong;Choi, Yong-Doo;Ryu, Sang-Woog
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.573-579
    • /
    • 2008
  • PBA/PS core-shell polymer nanoparticles were synthesized by two stage emulsion polymerization and hybridized with silica nanoparticle by simple mixing in emulsion state and following precipitation into water/methanol mixture dissolving $Na_2CO_3$. The stress-strain curve revealed that the elastic modulus was increased with increasing molecular weight of polymer and silica weight fraction but decreased with increasing size of core-shell nanoparticle. Especially, there was a rapid increase of elastic modulus with silica blending. As a result, 6 times higher elastic modulus was observed in PBA/PS core-shell baroplastic sample processed at 25$^\circ$C under 13.8 MPa for 5 min by blending with 13.0 wt% of silica nanoparticle.

Baroplastic Properties of Core-double Shell Type Nanoparticles Consisting of Crosslinked PS as a Core and PBA and PS as Shells (가교된 PS 코어와 PBA 및 PS 셸로 이루어진 코어-더블셸형 나노입자의 압력가소성)

  • Park, Ji-Young;Ryu, Sang-Woog
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.80-84
    • /
    • 2014
  • Polymer nanoparticles with cross-linked core and PBA/PS double-shell were synthesized and their baroplastic properties were characterized. PBA/PS, the inner and outer shell with cross-linked core consisting of St and DVB were synthesized by three-stage emulsion polymerization. The obtained materials exhibited pressure-induced mixing of their components and could be processed at $25^{\circ}C$ by compression molding which means there was no effect of the presence of cross-linked core. Interestingly, the Young's modulus of molded objects has found to be affected strongly by the size of double-shell nanoparticles. Furthermore, the molded object of higher PBA content was successfully recycled 5 times at $25^{\circ}C$ and showed 0.55 MPa of modulus and 1.81 MPa of strength at break.