• Title/Summary/Keyword: baroclinic forcing

Search Result 13, Processing Time 0.022 seconds

Experimental Study for Influence of Summertime Heat Sources and Basic States on Rossby Wave Propagation (여름철 열원과 기본장이 로스비 파동전파에 미치는 영향에 대한 실험 연구)

  • Kim, Seong-Yeol;Ha, Kyung-Ja;Yun, Kyung-Sook
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.505-518
    • /
    • 2010
  • We investigated the impacts of the diabatic heating location, vertical profile and basic state on the Rossby wave propagation. To examine the dynamical process of individual responses on the regional heat source, a dry version of the linear baroclinic model was used with climatological summertime (JJA) mean basic state and vertical structure of the diabatic heating for 1979-2008. Two sets of diabatic heating were constructed of those positioned in the mid-latitudes (Tibetan Plateau, eastern Mediterranean Sea, and the west-central Asia) and the tropics (the southern India, Bay of Bengal, and western Pacific). It was found that using the principal component analysis, atmospheric response to diabatic heating reaches to the steady state in 19th days in time. The prescribed mid-latitude forcing forms equivalent barotropic Rossby wave propagation along the westerly Asia jets, whereas the tropical forcing generates the Rossby wave train extending from the tropics to mid-latitudes. In relation to the maximum vertical profile, the mid-level forcing reveals a stronger response than the lower-level forcing, which may be caused by more effective Rossby wave response by the upper-level divergent flow. Under the different sub-seasonal mean state, both of the tropical and mid-latitude forcing induce the different sub-seasonal response intensity, due to the different basic-state wind.

Physical Envirionment Associated with Upwelling off the Southeast Coast of Korea (한국 남동해안의 용승과 관련된 물리환경)

  • Lee, Jae Chul;Kim, Dae Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.5
    • /
    • pp.579-589
    • /
    • 2018
  • Data from the two bottom moorings of ADCP (acoustic doppler current profiler), coastal weather station and CTC (conductivity temperature depth) observations for 2001 were analyzed to describe the physical processes associated with upwelling off the southeast coast of Korea. Winds were favorable for upwelling during summer, but were not correlated with currents. Shoaling of isotherms toward the coast due to the baroclinic tilting of the strong East Korean Warm Current (EKWC) provided a favorable background for immediate upwelling-response of surface temperature to southerly winds. This baroclinic effect was supported by a significant inverse coherence between the upper-layer current and bottom temperature near the coast. This upwelling is similar to the Guinea Current upwelling, which is driven by remote forcing (Houghton, 1989). Persistent southward flow was observed below approximately $10^{\circ}C$ isotherm throughout the observation period.

A Study of Estuarine Flow using the Roving ADCP Data

  • Kang, Ki-Ryong;Iorio, Daniela Di
    • Ocean Science Journal
    • /
    • v.43 no.2
    • /
    • pp.81-90
    • /
    • 2008
  • A study of estuarine flows during a neap tide was performed using 13-hour roving acoustic Doppler current profiles (ADCP) and conductivity-temperature-depth (CTD) profiles in the Altamaha River estuary, Georgia, U.S.A. The least-squared harmonic analysis method was used to fit the tidal ($M_2$) component and separate the flow into two components: the tidal and residual ($M_2$-removed) flows. We applied this method to depth-averaged data. Results show that the $M_2$ component demonstrates over 95% of the variability of observation data. As the flow was dominated by the $M_2$ tidal component in a narrow channel, the tidal ellipse distribution was essentially a back-and-forth motion. The amplitude of $M_2$ velocity component increased slightly from the river mouth (0.45 m/sec) to land (0.6 m/sec) and the phase showed fairly constant values in the center of the channel and rapidly decreasing values near the northern and southern shoaling areas. The residual flow and transport calculated from depth-averaged flow shows temporal variability over the tidal time scale. Strong landward flows appeared during slack waters which may be attributed to increased baroclinic forcing when turbulent mixing decreases.

A Numerical Modeling Study on the Seasonal Variability in the Gulf of Alaska (알라스카 만의 계절변화에 대한 수치모형 실험)

  • Bang, In-Kweon;Zygmunt Kowlik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.309-325
    • /
    • 1994
  • Ocean circulation in the Gulf of Alaska is remarkably constant throughout the year despite of being forced by one of the largest seasonal wind stresses in the world. To explain the small seasonal changes in the transport of Alaska Stream. a set of numerical models is employed. First a diagnostic approach is applied to reproduce circulation from the observed density structure. The results reveals the very small seasonal changes in the Alaska Stream transport. Next a series of the prognostic models is used: a barotropic model. a flat bottom baroclinic model, and baroclinic model with topography. These models reveal the influence of topography and baroclinicity on the ocean's response to the seasonal wind forcing. The intercomparisons of the various model results suggest that the seasonal response of the baroclinic ocean is primary barotropic and the resultant barotropic circulation is weakened by the scattering effect of the bottom topography.

  • PDF

The Analytic and Numerical Solutions of the 1$\frac{1}{2}$-layer and 2$\frac{1}{2}$-layer Models to the Strong Offshore Winds.

  • Lee, Hyong-Sun
    • Journal of the korean society of oceanography
    • /
    • v.31 no.2
    • /
    • pp.75-88
    • /
    • 1996
  • The analytic and numerical solution of the 1$\frac{1}{2}$-layer and 2$\frac{1}{2}$-layer models are derived. The large coastal-sea level drop and the fast westward speed of the anticyclonic gyre due to strong offshore winds using two ocean models are investigated. The models are forced by wind stress fields similar in structure to the intense mountain-pass jets(${\sim}$20 dyne/$cm^{2}$) that appear in the Gulfs of Tehuantepec and Papagayo in the Central America for periods of 3${\sim}$7 days. Analytic and numerical solutions compare favorably with observations, the large sea-level drop (${\sim}$30 cm) at the coast and the fast westward propagation speeds (${\sim}$13 km/day) of the gyres. The coastal sea-level drop is enhanced by several factors: horizontal mixing, enhanced forcing, coastal geometry, and the existence of a second active layer in the 2$\frac{1}{2}$-layer model. Horizontal mixing enhances the sea-level drop because the coastal boundary layer is actually narrower with mixing. The forcing ${\tau}$/h is enhanced near the coast where h is thin. Especially, in analytic solutions to the 2$\frac{1}{2}$-layer model the presence of two baroclinic modes increases the sea-level drop to some degree. Of theses factors the strengthened forcing ${\tau}$/h has the largest effect on the magnitude of the drop, and when all of them are included the resulting maximum drop is -30.0 cm, close to observed values. To investigate the processes that influence the propagation speeds of anticyclonic gyre, several test wind-forced calculations were carried out. Solutions to dynamically simpler versions of the 1$\frac{1}{2}$-layer model show that the speed is increased both by ${\beta}$-induced self-advection and by larger h at the center ofthe gyres. Solutions to the 2$\frac{1}{2}$-layer model indicate that the lower-layer flow field advects the gyre westward and southward, significantly increasing their propagation speed. The Papagayo gyre propagates westward at a speed of 12.8 km/day, close to observed speeds.

  • PDF

Evolution and scaling of a simulated downburst-producing thunderstorm outflow

  • Oreskovic, Christopher;Savory, Eric;Porto, Juliette;Orf, Leigh G.
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.147-161
    • /
    • 2018
  • For wind engineering applications downbursts are, presently, almost exclusively modeled, both experimentally and numerically, as transient impinging momentum jets (IJ), even though that model contains none of the physics of real events. As a result, there is no connection between the IJ-simulated downburst wind fields and the conditions of formation of the event. The cooling source (CS) model offers a significant improvement since it incorporates the negative buoyancy forcing and baroclinic vorticity generation that occurs in nature. The present work aims at using large-scale numerical simulation of downburst-producing thunderstorms to develop a simpler model that replicates some of the key physics whilst maintaining the relative simplicity of the IJ model. Using an example of such a simulated event it is found that the non-linear scaling of the velocity field, based on the peak potential temperature (and, hence, density) perturbation forcing immediately beneath the storm cloud, produces results for the radial location of the peak radial outflow wind speeds near the ground, the magnitude of that peak and the time at which the peak occurs that match well (typically within 5%) of those produced from a simple axi-symmetric constant-density dense source simulation. The evolution of the downdraft column within the simulated thunderstorm is significantly more complex than in any axi-symmetric model, with a sequence of downdraft winds that strengthen then weaken within a much longer period (>17 minutes) of consistently downwards winds over almost all heights up to at least 2,500 m.

Generation mechanisms of coastal low level jets associated with baroclinicity along the Texas Gulf coast (텍사스 연안의에 의한 연안저층 제트의 생성 역학)

  • ChoiHyo
    • 한국해양학회지
    • /
    • v.20 no.2
    • /
    • pp.28-39
    • /
    • 1985
  • The driving mechanisms for low level jets(LLJ) and coastal surface maximum winds are studied with observed wind data from June, 1976 through August, 1980 at Port Aransas and Victoria, Texas, in connection with a baroclinic model. This model is developed considering the forcing functions such as the synoptic and meso-scale pressure gradient, the frictional force, and the atmospheric stability. The results show that a LLJis observed on over 95% of the occasions when a nighttime coastal wind maximum occurred. Baroclinicity generated by sloping terrain during the summertime causes the diurnal variation in the thermal field. This thermal wind component would then decrease the prevailing synoptic-scale southerly wind by day and allow it to increase at night. Nighttime atmospheric stability leads to frictional decoupling which enhances the nocturnal LLJ. At the coastal site neutral stability prevails, thus all owing downward transfer of momentum from the nocturnal LLJ and results in the nocturnal coastal surface wind maximum. The height of LLJis not uniquely related to the inversion layer, and the results of the computations using this model show a good agreement with the observations.

Study on Lateral Flow Distribution and Momentum Analysis at Flood season and Neap tide of the Seokmo Channel in the Han River estuary (소조기 홍수시 한강하구 석모수로에서의 횡 방향 2차 흐름 및 운동량 분석)

  • Choi, Nak Yong;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.6
    • /
    • pp.390-399
    • /
    • 2012
  • This research observed the cross section current of 7 survey lines in Seokmo Channel of Gyeonggi bay with a lot of freshwater inflow and S-shaped for 13 hours during flood season and neap tide. We indicated the distribution of the current velocity by comprehending the speed and direction of the current velocity of each line during maximum flood, ebb tide and observed the distribution of salinity. Moreover, in order to understand what lateral momentum causes the lateral flow in each survey line, we practiced the momentum analysis through the observation data. As a result, the lateral baroclinic pressure gradient force and vertical friction of the Seokmo channel during neap tide were the strongest, and this is why the flow by the distribution of salinity and stratification most often occurs. In north of the Seokmo channel, where have wide intertidal and a lot of freshwater inflow, the secondary circulation is caused by balance of lateral baroclinic pressure gradient force and other forces, and the vertical friction was strong in the lines with small depth. On the other hand, in the southern part of the Seokmo channel where the water is deep and the waterway is curved, the advective acceleration and centrifugal force become stronger by the geographical causes during ebb and the influence of fresh water. Therefore, the lateral flow in the Seokmo channel was caused by the distribution of the momentum that differs by location, depth, curve, etc.

Analysis of the February 2014 East Coast Heavy SnowFall Case Due to Blocking (블로킹에 의한 2014년 2월 동해안 지방 폭설 분석)

  • Bae, Jeong-Ho;Min, Ki-Hong
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.227-241
    • /
    • 2016
  • This study investigated the cause of the heavy snowfall that occurred in the East Coast of Korea from 6 February to 14 February 2014. The synoptic conditions were analyzed using blocking index, equivalent potential temperature, potential vorticity, maritime temperature difference, temperature advection, and ground convergence. During the case period, a large blocking pattern developed over the Western Pacific causing the flow to be stagnant, and there was a North-South oriented High-to-Low pressure system over the Korean Peninsula because of this arrangement. The case period was divided into three parts based on the synoptic forcing that was responsible for the heavy snowfall; detailed analyses were conducted for the first and last period. In the first period, a heavy snowfall occurred over the entire Korean Peninsula due to strong updrafts from baroclinic instability and a low pressure caused by potential vorticity located at the mid-troposphere. In the lower atmosphere, a North-South oriented High-to-Low pressure system over the Eastern Korea intensified the easterly airflow and created a convergence zone near the ground which strengthened the upslope effect of the Taebaek Mountain range with a cumulative fresh snowfall amount of 41 cm in the East Coast region. In the last period, the cold air nestled in the Maritime Province of Siberia and Manchuria strengthened much more than that in the first half and extended to the East Sea. The temperature difference between the 850 hPa air and the SST was large and convective clouds developed over the sea. The highest cumulative fresh snow amount of 39.7 cm was recorded in the coastal area during this period. During the entire period, vertically oriented equivalent potential temperature showed neutral stability layer that helped the cloud formation and development in the East Coast. The 2014 heavy snowfall case over the East Coast provinces of Korea were due to: 1) stagnation of the system by blocking pattern, 2) the dynamic effect of mid-level potential vorticity of 1.6 PVU, 3) the easterly air flow from North-South oriented High-to-Low pressure system, 4) the existence of vertically oriented neutral stable layer, and 5) the expansion of strong cold air into the East Sea which created a large temperature difference between the air and the ocean.

Self-excited Variability of the East Korea Warm Current: A Quasi-Geostyophic Model Study

  • Lee, Sang-Ki
    • Journal of the korean society of oceanography
    • /
    • v.34 no.1
    • /
    • pp.1-21
    • /
    • 1999
  • A two-layer quasi-geostrophic numerical model is used to investigate the temporal variability of the East Korea Warm Current (EKWC), especially the separation from the Korean coast and the generation of warm eddies. An attention is given on the active role of the nonlinear boundary layer process. For this, an idealized flat bottom model of the East Sea is forced with the annual mean wind curl and with the inflow-outflow specified at the Korea (Tsushima) and Tsugaru Straits. Two types of separation mechanisms are identified. The first one is influenced by the westward movement of the recirculating leg of the EKWC (externally driven separation),the second one is solely driven by the boundary layer dynamics (internally driven separation). However, these two processes are not independent, and usually coexist. It is hypothesized that 'internally driven separation' arises as the result of relative vorticity production at the wall, its subsequent advection via the EKWC, and its accumulation up to a critical level characterized by the separation of the boundary flow from the coast. It is found that the sharp southeastern corner of the Korean peninsula provides a favorable condition for the accumulation of relative vorticity. The separation of the EKWC usually accompanies the generation of a warm eddy with a diameter of about 120 km. The warm eddy has a typical layer-averaged velocity of 0.3 m/s and its lifespan is up to a year. In general, the characteristics of the simulated warm eddy are compatible with observations. A conclusion is therefore drawn that the variability of the EKWC is at least partially self-excited, not being influenced by any sources of perturbation in the forcing field, and that the likely source of the variability is the barotropic instability although the extent of contribution from the baroclinic instability remains unknown. The effects of the seasonal wind curl and inflow-outflow strength are also investigated.

  • PDF