• Title/Summary/Keyword: barker code

Search Result 7, Processing Time 0.026 seconds

A Study on Barker Code of Radar Pulse Compression Technique (레이더 펄스 압축 기술의 Barker Code에 관한 연구)

  • Kim, Min-Soo;Koo, Ryung-Seo;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.541-547
    • /
    • 2013
  • Range resolution is important performance parameter to distinguish a target accurately. The destination of modern radar systems, to overcome the limitations of existing analog radar systems, is to improve the range resolution of the distance with low transmission power. For that reason, the research on pulse compression techniques is briskly studying. In the Receiver, modulation system of transmitted signal which has used in pulse compression technique is divided PM and FM to distinguish a target. In this paper, We analysed and designed the pulse compression signal processing module using the Baker Code which is the one of PM method's.

Optimal Radar Pulse Compression Processing Algorithm and the Resulting Optimal Codes for Pulse Compressed Signals (레이더 펄스 압축 신호의 최적 탐색 알고리즘 개발 및 최적 코드에 관한 연구)

  • 김효준;이명수;김영기;송문호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.1100-1105
    • /
    • 2000
  • The most widely used radar pulse compression technique is correlation processing using Barker code. This technique enhances detection sensitivity but, unfortunately, suffers from the addition of range sidelobes which sometimes will degrade the performance of radar systems. In this paper, our proposed optimal algorithm eliminates the sidelobes at the cost of additional processing and is evaluated in the presence of Doppler shift. We then propose optimal codes with regard to the proposed algorithm and the performance is compared against the traditional correlation processing with Barker codes. The proposed processing using optimal codes will be shown to be superior over the traditional processing in the presence of Doppler shift.

  • PDF

Experimental Results on an Underwater Acoustic Digital Transceiver Based on DSP (수중 음향 디지털 송수신기의 DSP 구현 및 실험적 고찰)

  • 박종원;최영철;이덕환;김시문;김승근;임용곤
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.296-299
    • /
    • 2003
  • In this paper, an underwater acoustic digital transceiver is designed and implemented by a multiple DSPs system. We have designed a QPSK transmitter based on look-up table and 13-symbols Barker code is used for frame synchronization. Channel distortions are compensated by a wide-band beamformer based on FIR filter and an adaptive equalize. with RLS algorithm. Uniform linear array (ULA) with four elements is used for the spartial signal processing. 1/2 convolutional code and Viterbi decoder are implemented to overcome time-varying multi-path fading. Also, we show experimental results in the underwater anechoic basin at KRISO/KORDl and Goseong, Donghae and Soyang lake of Kangwon-do.

  • PDF

A Study on the Design of Optimum Sidelobe Suppression Filter for Barker Codes (바커 코드에 대한 최적 부엽 억제 필터의 설계에 관한 연구)

  • 정경태
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.151-156
    • /
    • 1991
  • In this paper, we propose a new algorithm for designing the R-G filter that has optimum performance in terms of mean square sidelobe level(MSSL) for the Barker code. The advantage of the conventional R-G filter lies in its simple structure so that it can be easily implemented. However, the conventional R-G filter dose not have optimum performances in terms of peak sidelobe level(PSL), mean sidelobe level(MSL), and MSSL. Recently, a(R-G)LP filter of which filter coefficients are obtained by the linear programming algorithm was proposed and known to have optimum performance in PSL. The proposed (R-G)LS filter keeps the simple structure of the conventional R-G filter and has the filter coefficients that minimizes the sidelobe in the least square sense. The analytic results show that the proposed (R-G)LS filter has better performances than the conventional R-G filter in terms of PSL, MSL, and MSSL. Compared with (R-G)LP filter, the proposed (R-G)LS filter has better performances in terms of MSL and MSSL. The proposed filter design algorithm can be applied to the other binary codes such as truncated pseudonoise(PN) codes and concatenated codes.

  • PDF

Jamming Effect of Phase-Coded Pulse Compression Radar (위상코드 펄스압축 레이더의 재밍 효과)

  • Lim, Joong-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.5
    • /
    • pp.125-129
    • /
    • 2019
  • This paper describes the jamming effect of phase-coded pulse compression(PCPC) radar. Barker code radar, a typical PCPC radar, separates transmission pulses into 13 or 31 small pulses and phase modulates and transmits each pulse signal to increase radar detection efficiency and reduce the influence of jamming. Generally, when the radar is subjected to jamming, the detection distance becomes shorter and the detection error rate becomes higher. In the case of noise jamming or carrier jamming on the PCPC radar, the jamming effect is very small for no phase-coded convergence. However, the jamming effect is large in the case of synchronous jamming using the pulse-coded signal as a jamming signal with DRFM. It can be seen that the jamming effect increases when the storage time of the pulse-coded signal is prolonged. This study is considered to be useful for PCPC radar and EW jamming system design.

An Analysis of Optimal Sequences for the Detection of Wake-up Signal in Disaster-preventing Broadcast (재난방송용 대기모드 해제신호 검출을 위한 최적 부호 성능 분석)

  • Park, Hae Yong;Jo, Bonggyun;Kim, Heung Mook;Han, Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.19 no.4
    • /
    • pp.491-501
    • /
    • 2014
  • Recently, the need for disaster-preventing broadcast has increased gradually to cope with natural disaster like earthquake and tsunami causing enormous losses of both life and property. In disaster-preventing broadcast system, the wake-up signal is used to alert user terminal and switch the current state of channel to the emergency channel, which is for the fast and efficient delivery of emergency information. In this paper, we propose the detection method of wake-up signal for disaster-preventing broadcast systems. The wake-up signals for disaster-preventing broadcast should have a good auto-correlation property in low power and narrow-band conditions that does not affect the existing digital television (DTV) system. The suitability of the m-sequence and complementary code (CC) is analyzed for wake-up signals according to signal to noise ratio. A wake-up signal is proposed by combining the direct sequence spread spectrum (DSSS) technique and pseudo noise (PN) sequences such as Barker and Walsh-Hadamard codes. By using the proposed method, a higher detecting performance can be achieved by the spreading gain compared to the single long m-sequence and the Golay code.

Simultaneous Driving System of Ultrasonic Sensors Using Codes (코드를 이용한 초음파 동시구동 시스템)

  • 김춘승;최병준;이상룡;이연정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1028-1036
    • /
    • 2004
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments by virtue that they are cheap, easy to use, and robust under varying lighting conditions. In most cases, a single ultrasonic sensor is used to measure the distance to an object based on time-of-flight (TOF) information, whereas multiple sensors are used to recognize the shape of an object, such as a comer, plane, or edge. However, the conventional sequential driving technique involves a long measurement time. This problem can be resolved by pulse coding of ultrasonic signals, which allows multi-sensors to be emitted simultaneously and adjacent objects to be distinguished. Accordingly, this paper presents a new simultaneous coded driving system for an ultrasonic sensor array for object recognition in autonomous mobile robots. The proposed system is designed and implemented. A micro-controller unit is implemented using a DSP, Polaroid 6500 ranging modules are modified for firing the coded signals, and a 5-channel coded signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances fur each sensor were obtained from the received overlapping signals using correlations and conversion to a bipolar PCM-NRZ signal.