• Title/Summary/Keyword: barge

Search Result 247, Processing Time 0.038 seconds

Full-ship Load Out in Skid Berth

  • Kim, Yeong-Hwan;Kim, Hoe-Yong;Kang, Kyoung-Hyuk
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.133-135
    • /
    • 2008
  • For complying with the increasing number of ships construction, it's required that not only for minimizing the period of construction in Skid Berth also maximizing application proportion of Skid Barge, The full-ship load out construction method required indispensably.

  • PDF

Effect of Hull Form on Motion Characteristics of EPSO (선형이 EPSO의 운동특성에 미치는 영향)

  • 원윤상;심달진;김진기;유우준;장종희
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.266-269
    • /
    • 2001
  • This paper describes the effect of hull form on motion characteristics of FPSO. The purpose of the present study is to investigate seakeeping performance of ship type FPSO in comparison with those of barge type FPSO. Model test result shows that the barge type FPSO is better in heave and pitch motion, while the ship type FPSO is superior in roll motion.

  • PDF

A Dynamic Analysis of 150 ton Winch using Ocean Environment Data (해양 환경 데이터를 이용한 150톤 윈치의 동특성 해석)

  • Lee, Chang-Ho;Min, Cheon-Hong;Kim, Hyung-Woo;Jang, Jin-Woo;Hwang, Dong-Hwan;Rhyu, Yong-Suk
    • Ocean and Polar Research
    • /
    • v.39 no.3
    • /
    • pp.205-211
    • /
    • 2017
  • This paper seeks to provide a dynamic analysis of a 150 ton winch based on ocean environmental data. The winch model that was subjected to analysis was modeled from CAD to each subsystem by the commercial software DAFUL. The winch model has tree brake systems (disk brake, band brake and ratchet brake). The rotation motion of the motor and contact elements of the brake are applied to the winch model in order to analyze its dynamic characteristics. In addition, a crane-barge was modeled to apply ocean environmental data. The motion data of the crane-barge was produced by means of the RAO(Response Amplitude Operator) of the barge and wave spectrum. The reaction force of the translational joint was measured instead of the tension of the cable. The brake performance of the winch was produced and assessed based on the operating motion of the crane-barge.

Maximum Profit Priority Goods First Loading Algorithm for Barge Loading Problem (바지선 적재 문제의 최대이득 물품 우선 적재 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.169-173
    • /
    • 2014
  • Nobody has yet been able to determine the optimal solution conclusively whether NP-complete problems are in fact solvable in polynomial time. Gu$\acute{e}$ret et al. tries to obtain the optimal solution using linear programming with $O(m^4)$ time complexity for barge loading problem a kind of bin packing problem that is classified as nondeterministic polynomial time (NP)-complete problem. On the other hand, this paper suggests the loading rule of profit priority rank algorithm with O(m log m) time complexity. This paper decides the profit priority rank firstly. Then, we obtain the initial loading result using the rule of loading the good has profit priority order. Finally, we balance the loading and capability of barge swap the goods of unloading in previously loading in case of under loading. As a result of experiments, this algorithm reduces the $O(m^4)$ of linear programming to O(m log m) time complexity for NP-complete barge loading problem.

A Study on the Dynamic Response Analysis of the Fishery Barge Type Offshore Structure for Fitting Radar Reflector (레이더 리프렉터 장착을 위한 어업용 바지선의 동적 응답해석에 관한 연구)

  • Park Sung-Hyeon;Jeong Jung-Sik
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.383-388
    • /
    • 2005
  • To install a radar reflector on small ships, such as a small fishing vessel, a fishery buoy, and a barge ship for fishery, it is very important to develop the optimal system which may determine a proper installation location. For this, the response characteristics how waves have an effect on the small ships should be accurately analyzed. In this paper, we analyze the dynamic behaviors of small ships, which may be caused by irregular waves. To do this, we investigate how a barge ship responses to wavelength, water depth, and directions of incoming waves. The analyzed results shall be utilized to evaluate an effect on a radar cross section when we install an radar reflector on a barge ship for fishery and a small ship.

A Simplified Bridge-vessel Collision Model Considering with the Rotational Motions of the Vessel (선체의 회전을 고려한 선박과 교량의 간이충돌모델)

  • Lee, GyeHee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.43-49
    • /
    • 2011
  • In this study, to analyze the collision behaviors of the bridge super-structure and the vessel which the collision point is located far from its rotation center such as bridge of a vessel and equipments on a barge, the simplified collision model was proposed. The model was configured to denote the mass, stiffness and the nonlinear behaviors of the bridge and the vessel. The nonlinear equation of motions of the proposed model were numerically solved by 4th order Runge-Kutta method. The parametric studies were performed for various collision conditions by the standardized Korean barge vessel in term of barge width, and its effects to the maximum collision load of bridge were analyzed.

Experimental Results of Ship-to-Ship Stabilized Mooring System for Mobile Harbor

  • Jeong, Tae-Gweon;Lee, Yun-Sok;Chen, Chao;Kim, Se-Won
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.219-220
    • /
    • 2010
  • A new concept of ocean transport system, called mobile harbor, was introduced as a feasibility study in Korea in 2009. Target of the mobile harbor is a smart distance transport of containers with or without cargo handling cranes. Although the mobile harbor project has a lot of topics to deal with, this paper is to focus on only ship-to-ship stabilized mooring, which plays a key role in cargo handling. The ship-to-ship stabilized mooring system was developed and installed on beard a barge of LOA 32m and breadth 12m. The dockside tests as sea test were carried out so as to ascertain ascertained whether the systems can work well to control the barge's motion. The results of dockside test showed that the heave motion of the barge's motion can be reduced by more than 45%.

  • PDF

Dynamic Analysis of Topside Module in Lifting Installation Phase

  • Lee, Jong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.7-11
    • /
    • 2011
  • The installation phase for a topside module suggested can be divided into 9 stages, which include start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the topside module from a transport barge to a crane vessel takes place in the first three stages, from start to lifting, while the transfer of the module onto a floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with significant wave height (1.52m), with suggested force equilibrium diagrams. The effects of the hydrodynamic interactions between the crane vessel and barge during the lifting stage have been considered. The internal forces caused by the load transfer and ballasting are derived for the lifting phases. The results of these internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the lifting phases, the internal force induced pitch motion is too small to show its influence. However, the effect of the internal force on the wave-induced heave responses in the lifting phases is noticeable in the irregular sea condition because the transfer mass-induced draught changes in the floating structure are observed to have higher amplitudes than the external force induced responses.

Safety Analysis for Installation of Offshore Structure based on Proportional-Derivative Control Strategy with Multibody System

  • Cha, Ju-Hwan;Nam, Bo-Woo;Ha, Sol
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.35-46
    • /
    • 2018
  • In this paper, safety analysis of the process of installing offshore structures such as manifolds and jacket-type substructures using floating cranes and barges in waves is performed. The safety analysis consists of three components. First, the dynamic responses of the offshore structure, cranes, and barge, all of which are moored and connected using wire ropes, are analyzed. Second, tensions in the wire ropes connecting the cranes and the offshore structures are calculated. Finally, any collision between the offshore structure and the cranes or the barge that transports the offshore structure is detected. Equations of motion of the offshore structure, cranes, and barge are formulated based on multibody dynamics, as well as considering the hydrostatic, hydrodynamic, and mooring forces. Additionally, proportional-derivative control of the tagline between the cranes and the offshore structure is performed to verify the safety of the installation process, as well as for reducing the dynamic response and collisions among them.

Experimental Results of Ship-to-ship Stabilized Mooring System for Mobile Harbor

  • Jeong, Tae-Gweon;Lee, Yun-Sok;Chen, Chao;Kim, Se-Won
    • Journal of Navigation and Port Research
    • /
    • v.34 no.4
    • /
    • pp.281-286
    • /
    • 2010
  • A new concept of ocean transport system, called mobile harbor, was introduced as a feasibility study in Korea in 2009. Target of the mobile harbor is a short distance transport of containers with or without cargo handling cranes. Although the mobile harbor project has a lot of topics to deal with, this paper is to focus on only ship-to-ship stabilized mooring, which plays a key role in cargo handling. The ship-to-ship stabilized mooring system was developed and installed on board a barge of LOA 32m and breadth 12m. The dockside tests as sea test were carried out so as to ascertain whether the systems can work well to control the barge’s motion. The results of dockside test showed that the heave motion of the barge's motion can be reduced by more than 45%.