• Title/Summary/Keyword: barcoded pyrosequencing

Search Result 9, Processing Time 0.022 seconds

Sponge-Specific Unknown Bacterial Groups Detected in Marine Sponges Collected from Korea Through Barcoded Pyrosequencing

  • Jeong, Jong-Bin;Kim, Kyoung-Ho;Park, Jin-Sook
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • The bacterial diversity of 10 marine sponges belonging to the species Cliona celata, an unidentified Cliona species, Haliclona cinerea, Halichondria okadai, Hymeniacidon sinapium, Lissodendoryx isodictyalis, Penares incrustans, Spirastrella abata, and Spirastrella panis collected from Jeju Island and Chuja Island was investigated using amplicon pyrosequencing of the 16S rRNA genes. The microbial diversity of these sponges has as of yet rarely or never been investigated. All sponges, except Cliona celata, Lissodendoryx isodictyalis, and Penares incrustans, showed simple bacterial diversity, in which one or two bacterial OTUs occupied more than 50% of the pyrosequencing reads and their OTU rank abundance curves saturated quickly. Most of the predominant OTUs belonged to Alpha-, Beta-, or Gammaproteobacteria. Some of the OTUs from the sponges with low diversity were distantly (88%~89%) or moderately (93%~97%) related to known sequences in the GenBank nucleotide database. Phylogenetic analysis showed that many of the representative sequences of the OTUs were related to the sequences originating from sponges and corals, and formed sponge-specific or -related clades. The marine sponges investigated herein harbored unexplored bacterial diversity, and further studies should be done to understand the microbes present in sponges.

Analysis of Bacterial Diversity and Communities Associated with Tricholoma matsutake Fruiting Bodies by Barcoded Pyrosequencing in Sichuan Province, Southwest China

  • Li, Qiang;Li, Xiaolin;Chen, Cheng;Li, Shuhong;Huang, Wenli;Xiong, Chuan;Jin, Xing;Zheng, Linyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.89-98
    • /
    • 2016
  • Endophytes play an important role in the growth and development of the host. However, the study of endophytes is mostly focused on plants, and reports on bacteria associated with fungi are relatively rare. We studied the bacteria associated with fruiting bodies of Tricholoma matsutake picked from seven main T. matsutake-producing areas in Sichuan, China, by barcoded pyrosequencing. About 8,272 reads were obtained per sample, representing 40 phyla, 103 classes, and 495 genera of bacteria and archaea, and 361-797 operational taxonomic units were observed at a 97% similarity level. The bacterial community was always both more abundant and more diverse than the archaeal community. UniFrac analysis showed there were some difference of bacterial communities among the samples sites. Three bacterial phyla, Proteobacteria, Bacteroidetes, and Firmicutes, were dominant in all samples. Correlation analysis showed there was a significant correlation between some soil properties and bacterial community associated with T. matsutake. This study demonstrated that the bacteria associated with T. matsutake fruiting bodies were diversified. Among these bacteria, we may find some strains that can promote the growth of T. matsutake.

Niche partitioning of picocyanobacterial lineages in the oligotrophic northwestern Pacific Ocean

  • Choi, Dong Han;Selph, Karen E.;Noh, Jae Hoon
    • ALGAE
    • /
    • v.30 no.3
    • /
    • pp.223-232
    • /
    • 2015
  • More than 20 and 10 clades / ecotypes of Synechococcus and Prochlorococcus, respectively, have been identified in various oceanic regions. However, their diversity has yet to be thoroughly studied in the northwest Pacific Ocean. Further, spatial distribution of Synechococcus clades in the oligotrophic oceans has been scarcely characterized. To elucidate picocyanobacterial lineage distribution in the northwest Pacific Ocean, 16S-23S internal transcribed spacer sequences of picocyanobacteria were sequenced by barcoded amplicon pyrosequencing method. Additional pyrosequencing library using a primer specific for the Synechococcus subcluster-5.1 was constructed to thoroughly understand Synechococcus diversity in the oligotrophic oceans. In warm pool area, Prochlorococcus was predominant and showed a distinct depthpartitioning between HLII and LL ecotypes. Despite low abundances, diverse Synechococcus clades appeared in the oligotrophic open ocean, showing both vertical and horizontal niche partitioning. Clade II was the predominant Synechococcus clade, especially in upper euphotic depths. In shallow and middle euphotic depths, clades UC-A, III, and CRD1 were distributed broadly. However, a distinct shift in the horizontal distribution was found at ca. $20^{\circ}N$. Conversely, clades XVII and CRD2 dominated at deep euphotic depths and constituted a higher proportion than clade II. These niche-partitioning of Synechococcus clades seemed to be related with temperature, nutrient concentration as well as iron concentration.

Bacterial Diversity in the Guts of Sea Cucumbers (Apostichopus japonicus) and Shrimps (Litopenaeus vannamei) Investigated with Tag-Encoded 454 Pyrosequencing of 16S rRNA Genes (16S rRNA 유전자의 454 파이로서열 분석을 이용한 해삼(Apostichopus japonicas)과 새우(Litopenaeus vannamei)의 장내 세균의 다양성 연구)

  • Noh, Eun Soo;Kim, Young-Sam;Kim, Dong-Hyun;Kim, Kyoung-Ho
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.237-244
    • /
    • 2013
  • Bacterial diversities in the guts of sea cucumbers (Apostichopus japonicus) and shrimps (Litopenaeus vannamei) were investigated using barcoded or tag-encoded 454 pyrosequencing of 16S rRNA genes. In sea cucumbers, most of sequences were related to two genera, the genus Propionigenium in the phylum Fusobacteria and an unclassified genus in the family Flavobacteriaceae of phylum Bacteroidetes. Shrimps showed various kinds of genera including Lactococcus, Leuconostoc, Prochlorococcus, and Vibrio as well as the unclassified genera in the families, Flavobacteriaceae, Rhodobacteraceae, Desulfobulbaceae, and Helicobacteraceae and in the order Mycoplasmatales. Unclassified genera containing environmental sequences only are more than half of genera from sea cucumbers and shrimps. Sea cucumbers and shrimps could be unexplored sources of novel microbes and the bacterial diversity of them was revealed by high throughput 454 pyrosequencing.

Duration-Related Variations in Archaeal Communities after a Change from Upland Fields to Paddy Fields

  • Jiang, Nan;Wei, Kai;Chen, Lijun;Chen, Rui
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.867-875
    • /
    • 2016
  • Archaea substantially contribute to global geochemical cycling and energy cycling and are impacted by land-use change. However, the response of archaeal communities to a change from upland field to paddy field has been poorly characterized. Here, soil samples were collected at two depths (0-20 cm and 20-40 cm) from one upland field and six paddy fields that were established on former upland fields at different times (1, 5, 10, 20, 30, and 40 years before the study). Barcoded pyrosequencing was employed to assess the archaeal communities from the samples at taxonomic resolutions from phylum to genus levels. The total archaeal operational taxonomic unit (OTU) richness showed a significant positive correlation with the land-use change duration. Two phyla, Euryarchaeota and Crenarchaeota, were recorded throughout the study. Both the relative abundance and OTU richness of Euryarchaeota increased at both depths but increased more steadily at the subsurface rather than at the surface. However, these data of Crenarchaeota were the opposite. Additionally, the archaeal composition exhibited a significant relationship with C/N ratios, total phosphorus, soil pH, Olsen phosphorus, and the land-use change duration at several taxonomic resolutions. Our results emphasize that after a change from upland fields to paddy fields, the archaeal diversity and composition changed, and the duration is an important factor in addition to the soil chemical properties.

Picocyanobacterial Diversity and Distribution During Summer in the Northern East China Sea (하계 동중국해 북부 해역에서 초미소남세균의 다양성 및 분포 양상)

  • Choi, Dong-Han
    • Ocean and Polar Research
    • /
    • v.34 no.1
    • /
    • pp.19-28
    • /
    • 2012
  • In order to understand the spatial distribution of picocyanobacterial diversity during the summer in the northern East China Sea (ECS), their abundance and genetic diversity were investigated using flow cytometry and barcoded amplicon pyrosequencing of 16S-23S internal transcribed spacer sequences. Synechococcus abundance was high, with a range of $0.2{\times}10^5$ to $1.8{\times}10^5$ cells $ml^{-1}$. However, Prochlorococcus were found only in the eastern part of the studied area, showing a marked variation among stations [range of n.d. (not detected) to $3.3{\times}10^4$ cells $ml^{-1}$]. Eleven Synechococcus clades and five Prochlorococcus ecotypes were found to have a proportion higher than 1% among picocyanobacterial sequences, indicating high picocyanobacterial diversity in the ECS. The picocyanobacterial compositions were markedly different among stations, as well as among depths. Inflow of the Tsushima Warm Current and Changjiang diluted water was of primary importance in determining picocyanobacterial lineage diversity in the studied area. In addition, light intensity and nutrient conditions also appeared to be important in the vertical and horizontal distribution of picocyanobacterial diversity.

Bacterial and fungal community composition across the soil depth profiles in a fallow field

  • Ko, Daegeun;Yoo, Gayoung;Yun, Seong-Taek;Jun, Seong-Chun;Chung, Haegeun
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.271-280
    • /
    • 2017
  • Background: Soil microorganisms play key roles in nutrient cycling and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depths, we analyzed microbial activities and bacterial and fungal community composition in soils up to a 120 cm depth at a fallow field located in central Korea. To examine the vertical difference of microbial activities and community composition, ${\beta}$-1,4-glucosidase, cellobiohydrolase, ${\beta}$-1,4-xylosidase, ${\beta}$-1,4-N-acetylglucosaminidase, and acid phosphatase activities were analyzed and barcoded pyrosequencing of 16S rRNA genes (bacteria) and internal transcribed spacer region (fungi) was conducted. Results: The activity of all the soil enzymes analyzed, along with soil C concentration, declined with soil depth. For example, acid phosphatase activity was $125.9({\pm}5.7({\pm}1SE))$, $30.9({\pm}0.9)$, $15.7({\pm}0.6)$, $6.7({\pm}0.9)$, and $3.3({\pm}0.3)nmol\;g^{-1}\;h^{-1}$ at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1, and 17.5% at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3, and 0.4% at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7% at 15, 30, 60, 90, and 120 cm depths, respectively), a dominant fungal group at this site, showed no clear trend along the soil profile. Conclusions: Our results show that soil C availability can determine soil enzyme activity at different soil depths and that bacterial communities have a clear trend along the soil depth at this study site. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of soil microbial communities and their relationship with biogeochemical factors.

Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete

  • Kim, Hyun Jung;Eom, Hyo Jung;Park, Chulwoo;Jung, Jaejoon;Shin, Bora;Kim, Wook;Chung, Namhyun;Choi, In-Geol;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.540-548
    • /
    • 2016
  • Microbially induced calcium carbonate precipitation (CCP) is a long-standing but re-emerging environmental engineering process for production of self-healing concrete, bioremediation, and long-term storage of CO2. CCP-capable bacteria, two Bacillus strains (JH3 and JH7) and one Sporosarcina strain (HYO08), were isolated from two samples of concrete and characterized phylogenetically. Calcium carbonate crystals precipitated by the three strains were morphologically distinct according to field emission scanning electron microscopy. Energy dispersive X-ray spectrometry mapping confirmed biomineralization via extracellular calcium carbonate production. The three strains differed in their physiological characteristics: growth at alkali pH and high NaCl concentrations, and urease activity. Sporosarcina sp. HYO08 and Bacillus sp. JH7 were more alkali- and halotolerant, respectively. Analysis of the community from the same concrete samples using barcoded pyrosequencing revealed that the relative abundance of Bacillus and Sporosarcina species was low, which indicated low culturability of other dominant bacteria. This study suggests that calcium carbonate crystals with different properties can be produced by various CCP-capable strains, and other novel isolates await discovery.

Short-Term Effect of Elevated Temperature on the Abundance and Diversity of Bacterial and Archaeal amoA Genes in Antarctic Soils

  • Han, Jiwon;Jung, Jaejoon;Park, Minsuk;Hyun, Seunghun;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1187-1196
    • /
    • 2013
  • Global warming will have far-reaching effects on our ecosystem. However, its effects on Antarctic soils have been poorly explored. To assess the effects of warming on microbial abundance and community composition, we sampled Antarctic soils from the King George Island in the Antarctic Peninsula and incubated these soils at elevated temperatures of $5^{\circ}C$ and $8^{\circ}C$ for 14 days. The reduction in total organic carbon and increase in soil respiration were attributed to the increased proliferation of Bacteria, Fungi, and Archaea. Interestingly, bacterial ammonia monooxygenase (amoA) genes were predominant over archaeal amoA, unlike in many other environments reported previously. Phylogenetic analyses of bacterial and archaeal amoA communities via clone libraries revealed that the diversity of amoA genes in Antarctic ammonia-oxidizing prokaryotic communities were temperature-insensitive. Interestingly, our data also showed that the amoA of Antarctic ammonia-oxidizing bacteria (AOB) communities differed from previously described amoA sequences of cultured isolates and clone library sequences, suggesting the presence of novel Antarctic-specific AOB communities. Denitrification-related genes were significantly reduced under warming conditions, whereas the abundance of amoA and nifH increased. Barcoded pyrosequencing of the bacterial 16S rRNA gene revealed that Proteobacteria, Acidobacteria, and Actinobacteria were the major phyla in Antarctic soils and the effect of short-term warming on the bacterial community was not apparent.