• Title/Summary/Keyword: bang-bang control

Search Result 1,148, Processing Time 0.025 seconds

Design of Semi-Active Tendon for Vibration Control of Large Structures (대형 구조물의 진동제어를 위한 반능동형 댐퍼의 설계)

  • Kim, Saang-Bum;Yun, Chung-Bang;Gu, Ja-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.282-286
    • /
    • 2000
  • In this paper, magneto-rheological(MR) damper is studied for vibration control of large infra structures under earthquake. Generally, active control devices need a large control force and a high power supply system to reduce the vibration effectively. Large and miss tuned control force may induce the dangerous situation such that the generated large control force acts to amplify the structural vibration. Recently, to overcome the weaknesses of the active control, the semi-active control method is suggested by many researchers. Semi-active control uses the passive control device of which the characteristics can be modified. Control force of the semi-active device is not generated from the actuator with power supply. It is generated as a dynamic reaction force of the device same as in the passive control case, so the control system is inherently stable and robust. Unlike the case of passive control, control force of semi-active control is adjusted depending on the measured response of the structure, so the vibration can be reduced more effectively against various unknown environmental loads. Magneto-rheological(MR) damper is one of the semi-active devices. Dynamic characteristics of the MR material can be changed by applying the magnetic fields. So the control of MR damper needs only small power. Response time of MR to the input voltage is very short, so the high performance control is possible. MR damper has a high force capacity so it is adequate to the vibration control of large infra structure. Because MR damper has a nonlinear property, normal control method used in active control may not be effective. Clipped optimal control, modified bang-bang control etc. have been suggested to MR damper by many researchers. In this study, sliding mode fuzzy control(SMFC) is applied to MR damper. Genetic algorithm is used for the controller tuning. To verify the applicability of MR damper and suggested algorithm, numerical simulation on the aseismic control is carried out. Simulation model is three-story building structure, which was used in the paper of Dyke, et al. The control performance is compared with clipped optimal control. The present results indicate that the SMFC algorithm can reduce the earthquake-induced vibration very effectively.

  • PDF

STUDY ON THE ATTITUDE CONTROL OF SPACECRAFT USING REACTION WHEELS (반작용휠을 이용한 위성체 자세제어 연구)

  • 두주영;최규홍;이상욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.245-250
    • /
    • 1998
  • Attitude determination and control of satellite is important component which determines the accomplish satellite missions. In this study, attitude control using reaction wheels and momentum dumping of wheels are considered. Attitude control law is designed by Sliding control and LQR. Attitude maneuver control law is obtained by Shooting method. Wheels momentum dumping control law is designed by Bang-Bang control. Four reaction wheels are configurated for minimized the electric power consumption. Wheels control torque and magnetic moment of magnetic torquer are limited.

  • PDF

Minimum-Time Guidance and Control Law for High Maneuvering Missile

  • Yamaoka, Seiji
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.46-58
    • /
    • 2009
  • This paper deals with design procedure of online guidance and control law for future missiles that requires agile maneuverability. For the purpose, the missile with high powered side thruster is proposed. The guidance and control law for such missiles is discussed from a point of view of optimal control theory in this paper. Minimum time problem is solved for the approximated system. It is derived that bang- bang control is optimal input from the necessary conditions of optimal solution. Feedback guidance without iterative calculation is useful for actual systems. In this paper. multiple design point method is applied to design feedback gains and feed forward inputs of the guidance and control law. The numerical results show that the proposed guidance and control law has a high -performance for wide-ranging boundary conditions.

Design and Verification of Satellite Attitude Control system for Roll Maneuver (인공위성의 Roll축 자세제어시스템 설계 및 검증)

  • 김희섭;김기석;안재명;김유단;최완식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.370-378
    • /
    • 1999
  • KOMPSAT is a three-axis stabilized light weight satellite, and one of the main mission objectives of the KOMPSAT is to conduct scientific and technological analysis in the areas of high resolution imaging and ocean color imaging. This kind of mission requires the satellite to roll up to 45 degrees. Bang-bang control for this rolling maneuver may activate the flexible modes, and therefore cause satellite pointing performance degradation. To deal with this problem, the roll attitude control system, especially for the science mode and maneuver mode of the KOMPSAT, is first verified by numerical simulation. And the open-loop control law for roll maneuver is proposed by use of series expansion and optimization. The proposed control law is applied to KOMPSAT to see its effectiveness.

  • PDF

A simple method for treating nonlinear control systems through state feedback

  • Han, Kyeng-Cheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.931-933
    • /
    • 1989
  • If the nonlinear term in a nonlinear control system equation can be deleted by state feedback control, the original system becomes a linear system. For this linear control system, many well known methods may be used to handle it, and then reverse it back to nonlinear form. Many problems of nonlinear control systems can be solved in this way. In this paper, this method will be used to transfer the identification problem of nonlinear systems into a linear control problem. The nonlinear observer is established by constructing linear observer. Then the state control of nonlinear systems is realized. Finally, the technique of the PID controller obtained by using bang-bang tracker as a differentiator provides a stronger robust controller. Even though the method in this paper may not theoretically perfect, many numerical simulations show that it is applicable.

  • PDF

Near-Minimum-Time Cornering Trajectory Planning and Control for Differential Wheeled Mobile Robots with Motor Actuation Voltage Constraint (차륜 이동 로봇의 모터 구동 전압 제한 조건을 고려한 코너링(cornering) 모션의 최소 시간 궤적 계획 및 제어)

  • Byeon, Yong-Jin;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.845-853
    • /
    • 2012
  • We propose time-optimal cornering motion trajectory planning and control algorithms for differential wheeled mobile robot with motor actuating voltage constraint, under piecewise constant control input condition. For time-optimal cornering trajectory generation, 1) we considered mobile robot's dynamics including actuator motors, 2) divided the cornering trajectory into one liner section, followed by two cornering section with angular acceleration and deceleration, and finally one liner section, and 3) formulated an efficient trajectory generation algorithm satisfying the bang-bang control principle. Also we proposed an efficient trajectory control algorithm and implemented with an X-bot to prove the performance.

Design of low jitter CDR using a single edge binary phase detector (단일 에지 이진위상검출기를 사용한 저 지터 클록 데이터 복원 회로 설계)

  • An, Taek-Joon;Kong, In-Seok;Im, Sang-Soon;Kang, Jin-Ku
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.544-549
    • /
    • 2013
  • This paper describes a modified binary phase detector (Bang-Bang phase detector - BBPD) for jitter reduction in clock and data recovery (CDR) circuits. The proposed PD reduces ripples in the VCO control voltage resulting in reduced jitter for CDR circuits. A 2.5 Gbps CDR circuit with a proposed BBPD has been designed and verified using Dongbu $0.13{\mu}m$ CMOS technology. Simulation shows the CDR with proposed PD recovers data with peak-to-peak jitter of 10.96ps, rms jitter of 0.86ps, and consumes 16.9mW.

High Speed Position Control of MM Type LDM (가동자석형 LDM의 고속 위치제어에 관한 연구)

  • Baek, S.H.;Kim, Y.;Ham, J.G.;Lee, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.482-484
    • /
    • 1994
  • In this paper, to realize high speed position control of LDM (Linear DC Motor), the minimum time control method is applied. But, In this control method, calculation of non-linear function is required Therefore, in order to avoid this complex calculation, optimum switching of the Bang-Bang control is done on parabola type switching function established in the plane of phase. But, the sliding mode is occurred due to the modeling error of LDM and the variation of parameters. Thereby, the optimum 'control is not realized. In order to realize optimum control, the algorithm to modify switching function is proposed

  • PDF

Enhanced Track Jump Stability in Optical Disc Drives (광디스크 드라이브에서의 트랙 점프 안정도 향상)

  • Ryoo, Jung-Rae;Doh, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.683-687
    • /
    • 2009
  • Track jump control is a random access strategy for short distance movement. The most common track jump scheme is a bang-bang control of a kick and brake manner. In a conventional track jump scheme, a track-following compensator is turned off during kick and brake periods, and restarted at a target track for track pull-in. The inevitable controller switching with non-zero initial condition results in undesirable transient response, and excessive overshoot in the transient response causes track pull-in failure. In this paper, a new track jump scheme is proposed for enhancing track jump stability. Instead of control switching, internal states of a track-following controller are artificially manipulated for kick and brake actions in a digital control environment. Experimental results are provided in comparison with conventional track jumps.

Fuzzy Logic Control of an Yo-yo (퍼지 논리를 이용한 요요제어)

  • 이연정;이승하;심광현;방석원;변증남
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.23-31
    • /
    • 1994
  • In this paper, the yo-yo control system is introduced as a new benchmark system for evaluation of intellignet controllers. In order to control an yo-yo, and asymmetric nonlinear controller is needed due to the unique nonlinear asymmetric dynamic characteristics of the system. As such, it is difficult to control an yo-yo either by a linear controller or by a bang-bang controller. In the paper, we have inplemented a yyo control system with a general=purpose fuzzy controller. In the fuzzy control, 14 if-then rules are used, being extracted from human experties and, for real-time control, a fuzzy inference hardware(called FLEXi) is used.

  • PDF