• Title/Summary/Keyword: bandwidth allocation algorithm

Search Result 185, Processing Time 0.026 seconds

A Study on the Bandwidth Allocation Control of Virtual Paths in ATM Networks for Multimedia Service (멀티미디어 서비스를 위한 ATM망에서 가상경로의 대역폭 할당 제어에 관한 연구)

  • Jang, Yung-Chul;Lee, Jung-Jei;Oh, Moo-Song
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.6
    • /
    • pp.1433-1442
    • /
    • 1997
  • Algorithm design is needed to optimized bandwidth which satisfy quality of service(QoS) requirements of vary traffic classes for Multimedia service in ATM networks. The diverse flow characteristics e.g., burstiness, bit rate and burst length, have to guarantee the different quality of service(QoS) requirements in Asynchronous Transfer Mode(ATM). The QoS parameter may be measured in terms of cell loss probability and maximum cell dely. In this paper, we consider the ATM networks which the virtual path(vip) concept is implemented by applying the Markov Modulated Deterministic Process method. We develop an efficient algorithm to computer the minimum capacity required to satisfy all the QoS requirements when multiple classes of on-off source are multiplexed on single VP. Using above the result, we propose a simple algorithm to determine the VP combination to achieve the near optimum of total capacity required for satisfying the individual QoS requirements. Numerical results are also presented to demonstrate the performance of the algorithm, when compared to the optimal total capacity required.

  • PDF

A study on improving fairness and congestion control of DQDB using buffer threshold value (버퍼의 문턱치값을 이용한 DQDB망의 공평성 개선 및 혼잡 제어에 관한 연구)

  • 고성현;조진교
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.618-636
    • /
    • 1997
  • DQDB(Distributed Queue Dual Bus) protocol, the IEEE 802.6 standard protocol for metropolitan area networks, does not fully take advantage of the capabilities of dual bus architecture. Although fairness in bandwidth distribution among nodes is improved when using so called the bandwidth balancing mechanism, the protocol requires a considerable amount of time to adjust to changes in the network load. Additionally, the bandwidth balancing mechanism leaves a portion of the available bandwidth unused. In a high-speed backbone network, each node may act as a bridge/ router which connects several LANs as well as hosts. However, Because the existence of high speed LANs becomes commonplace, the congestionmay occur on a node because of the limitation on access rate to the backbone network and on available buffer spaces. to release the congestion, it is desirable to install some congestion control algorithm in the node. In this paper, we propose an efficient congestion control mechanism and fair and waster-free MAC protocol for dual bus network. In this protocol, all the buffers in the network can be shared in such a way that the transmission rate of each node can be set proportional to its load. In other words, a heavily loaded node obtains a larger bandwidth to send the sements so tht the congestion can be avoided while the uncongested nodes slow down their transmission rate and store the incoming segments into thier buffers. this implies that the buffers on the network can be shared dynamically. Simulation results show that the proposed probotol significantly reduces the segment queueing delay of a heavily loaded node and segment loss rate when compared with original DQDB. And it enables an attractive high throughput in the backbone network. Because in the proposed protocol, each node does not send a requet by the segment but send a request one time in the meaning of having segments, the frequency of sending requests is very low in the proposed protocol. so the proposed protocol signigificantly reduces the segment queuing dely. and In the proposed protocol, each node uses bandwidth in proportion to its load. so In case of limitation of available buffer spaces, the proposed protocol reduces segment loss rate of a heavily loaded node. Bandwidth balancing DQDB requires the wastage of bandwidth to be fair bandwidth allocation. But the proposed DQDB MAC protocol enables fair bandwidth without wasting bandwidth by using bandwidth one after another among active nodes.

  • PDF

An Address Autoconfiguration Algorithm of Mobile IPv6 through Internet Gateway in Ad-Hoc Networks (Mobile IPv6기반 Ad-Hoc 네트워크에서의 Internet Gateway를 통한 IP주소 자동 할당 방법)

  • Choi Jung-Woo;Park Sung-Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.150-155
    • /
    • 2006
  • A hybrid Ad-hoc network connected to the Internet needs an IP address configuration to communicate with the Internet. Most of proposed address autoconfiguration algorithms are node based. The node based address autoconfiguration algorithms waste bandwidth and consume much battery in mobile ad-hoc networks. In this paper, we propose the address allocation algorithm in hybrid Mobile ad-hoc network (MANET). The proposed algorithm reduces network traffic by transferring address configuration packet to the internet gateway by unicast method. Moreover, our IP address configuration algorithm also reduces battery consumption and address configuration time by decreasing number of configuration packets on internet gateway.

Kalman Filtering-based Traffic Prediction for Software Defined Intra-data Center Networks

  • Mbous, Jacques;Jiang, Tao;Tang, Ming;Fu, Songnian;Liu, Deming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2964-2985
    • /
    • 2019
  • Global data center IP traffic is expected to reach 20.6 zettabytes (ZB) by the end of 2021. Intra-data center networks (Intra-DCN) will account for 71.5% of the data center traffic flow and will be the largest portion of the traffic. The understanding of traffic distribution in IntraDCN is still sketchy. It causes significant amount of bandwidth to go unutilized, and creates avoidable choke points. Conventional transport protocols such as Optical Packet Switching (OPS) and Optical Burst Switching (OBS) allow a one-sided view of the traffic flow in the network. This therefore causes disjointed and uncoordinated decision-making at each node. For effective resource planning, there is the need to consider joining the distributed with centralized management which anticipates the system's needs and regulates the entire network. Methods derived from Kalman filters have proved effective in planning road networks. Considering the network available bandwidth as data transport highways, we propose an intelligent enhanced SDN concept applied to OBS architecture. A management plane (MP) is added to conventional control (CP) and data planes (DP). The MP assembles the traffic spatio-temporal parameters from ingress nodes, uses Kalman filtering prediction-based algorithm to estimate traffic demand. Prior to packets arrival at edges nodes, it regularly forwards updates of resources allocation to CPs. Simulations were done on a hybrid scheme (1+1) and on the centralized OBS. The results demonstrated that the proposition decreases the packet loss ratio. It also improves network latency and throughput-up to 84 and 51%, respectively, versus the traditional scheme.

The MAC Protocol based on Interleave Polling for Differentiated Services on Ethernet PON (EPON의 차등적 서비스 지원을 위한 인터리브 폴링 기반의 MAC 프로토콜)

  • 이순화;이종호;김장복
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6B
    • /
    • pp.531-537
    • /
    • 2004
  • EPON which is the economical technology of FTTH is being actively researched as one of next generation of subscriber configurations. EPON based on Ethernet should provide subscriber with dynamic bandwidth allocation so as to support QoS. Allocation per service in grade should be satisfied resulting from the increment of the latest multimedia application arid consumption. In this paper, New Algorithm is proposed to serve differential service on MAC protocol. The delay characteristic of packet and stability are analyzed that is shown the QoS of EPON network.

Intelligent Massive Traffic Handling Scheme in 5G Bottleneck Backhaul Networks

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.874-890
    • /
    • 2021
  • With the widespread deployment of the fifth-generation (5G) communication networks, various real-time applications are rapidly increasing and generating massive traffic on backhaul network environments. In this scenario, network congestion will occur when the communication and computation resources exceed the maximum available capacity, which severely degrades the network performance. To alleviate this problem, this paper proposed an intelligent resource allocation (IRA) to integrate with the extant resource adjustment (ERA) approach mainly based on the convergence of support vector machine (SVM) algorithm, software-defined networking (SDN), and mobile edge computing (MEC) paradigms. The proposed scheme acquires predictable schedules to adapt the downlink (DL) transmission towards off-peak hour intervals as a predominant priority. Accordingly, the peak hour bandwidth resources for serving real-time uplink (UL) transmission enlarge its capacity for a variety of mission-critical applications. Furthermore, to advance and boost gateway computation resources, MEC servers are implemented and integrated with the proposed scheme in this study. In the conclusive simulation results, the performance evaluation analyzes and compares the proposed scheme with the conventional approach over a variety of QoS metrics including network delay, jitter, packet drop ratio, packet delivery ratio, and throughput.

Bandwidth Allocation and Real-time Transmission Scheduling Methods for Transporting MPEG-4 Video in Wireless LANs (무선 LAN에서 MPEG-4 비디오 전송을 위한 대역폭 할당과 실시간 통신 스케쥴링 기법)

  • Kim, Jin-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.15B no.5
    • /
    • pp.413-420
    • /
    • 2008
  • Network bandwidth is one of the major factors that impact the cost of a video service. In this paper we propose approaches to reducing the bandwidth requirement for transporting MPEG-4 video traffic over wireless LANs while guaranteeing a required level of quality of service(QoS). To support high quality video playbacks, video frames must be transported to the client prior to their playback times. A real-time transmission scheduling is used for this purpose, which transmits each frame assigned with a priority according to its importance. It addresses the challenge for a scheduling algorithm that efficiently handles the changing workloads of MPEG-4 video traffic. The goal of our research is to maximize the number of frames that are transported within their deadlines while minimizing the tardiness of frames that missed their deadlines. The performance of the proposed method is compared with that of similar service mechanisms through extensive simulation experiments.

QoS Improvement Method for Real Time Traffic in Wireless Networks (무선망에서 실시간 트래픽을 위한 QoS 향상 기법)

  • Kim, Nam-Hee;Kim, Byun-Gon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.6
    • /
    • pp.34-42
    • /
    • 2008
  • MAC(Medium Access Control) is demanded to provide end-to-end QoS(Quality of Service) for a variety of traffic in the wireless networks. When all the traffic is integrated in the channel, the main difficulty of the MAC protocol is how to efficiently support multi-class traffic in the limited bandwidth wireless channel. In this paper, we proposed the dynamic bandwidth slot method for improving QoS of the real time traffics. In this paper, we used in-band scheme to send dynamic parameter and considering buffer size and delay variation, we enabled 2 state bits to send to base station in mobile station. The proposed algorithm is to guarantee QoS of real time traffic and maximize transfer efficiency in wireless networks.

Hierarchical Cellular Network Design with Channel Allocation Using Genetic Algorithm (유전자 알고리즘을 이용한 다중계층 채널할당 셀룰러 네트워크 설계)

  • Lee, Sang-Heon;Park, Hyun-Soo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.321-333
    • /
    • 2005
  • With the limited frequency spectrum and an increasing demand for cellular communication services, the problem of channel assignment becomes increasingly important. However, finding a conflict free channel assignment with the minimum channel span is NP hard. As demand for services has expanded in the cellular segment, sever innovations have been made in order to increase the utilization of bandwidth. The innovations are cellular concept, dynamic channel assignment and hierarchical network design. Hierarchical network design holds the public eye because of increasing demand and quality of service to mobile users. We consider the frequency assignment problem and the base station placement simultaneously. Our model takes the candidate locations emanating from this process and the cost of assigning a frequency, operating and maintaining equipment as an input. In addition, we know the avenue and demand as an assumption. We propose the network about the profit maximization. This study can apply to GSM(Global System for Mobile Communication) which has 70% portion in the world. Hierarchical network design using GA(Genetic Algorithm) is the first three-tier (Macro, Micro, Pico) model, We increase the reality through applying to EMC (Electromagnetic Compatibility Constraints). Computational experiments on 72 problem instances which have 15${\sim}$40 candidate locations demonstrate the computational viability of our procedure. The result of experiments increases the reality and covers more than 90% of the demand.

  • PDF

Self-Organized Resource Allocation for Femtocell Network to Mitigate Downlink Interference

  • Sable, Smita;Bae, Jinsoo;Lee, Kyung-Geun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2410-2418
    • /
    • 2015
  • In this paper, we consider the femto users and their mutual interference as graph elements, nodes and weighted edges, respectively. The total bandwidth is divided into a number of resource blocks (RBs) and these are assigned to the femto user equipment (FUEs) using a graph coloring algorithm. In addition, resources blocks are assigned to the femto users to avoid inter-cell interference. The proposed scheme is compared with the traditional scheduling schemes in terms of throughput and fairness and performance improvement is achieved by exploiting the graph coloring scheme.