• Title/Summary/Keyword: banding artifact

Search Result 2, Processing Time 0.012 seconds

Multitoning Method Based on Arrangement of Ink Distribution for Smooth Tone Transition (부드러운 계조 변화를 위한 잉크 분포 조절 기반의 멀티토닝 방법)

  • Park, Tae-Yong;Park, Kee-Hyon;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.17-25
    • /
    • 2007
  • Multilevel inkjet printer employs multiple ink droplets with variable dot size and/or different concentrations intended to preserve high fidelity color reproduction and the appearance of continuous tone. A variety of research efforts on multitoning techniques has progressed toward better image quality. However, banding artifacts appear due to the same dot distributions near the printable output levels. This results in discontinuity and visually unpleasing output, especially at the smooth tone transition region. In this paper, to reduce the banding artifacts, a multitoning method to arrange ink distribution by controlling the blending proportion of adjacent output pixels based on an improved threshold scaling function is proposed. Ink distributions across the banding regions are changed according to two factors of the threshold scaling function because these factors handle the blending point of adjacent output pixel. Therefore, 8 observers, subjectively investigated ink distributions around the printable output levels for a set of the improved threshold scaling function. For a threshold scaling function with the specific factor values, we can achieve smoother visual transition. In the experiment, the proposed method showed a reduction of banding artifacts in both u-ay and color image and represented better Performance of color reproduction.

Highly Accelerated SSFP Imaging with Controlled Aliasing in Parallel Imaging and integrated-SSFP (CAIPI-iSSFP)

  • Martin, Thomas;Wang, Yi;Rashid, Shams;Shao, Xingfeng;Moeller, Steen;Hu, Peng;Sung, Kyunghyun;Wang, Danny JJ
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.4
    • /
    • pp.210-222
    • /
    • 2017
  • Purpose: To develop a novel combination of controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) with integrated SSFP (CAIPI-iSSFP) for accelerated SSFP imaging without banding artifacts at 3T. Materials and Methods: CAIPI-iSSFP was developed by adding a dephasing gradient to the balanced SSFP (bSSFP) pulse sequence with a gradient area that results in $2{\pi}$ dephasing across a single pixel. Extended phase graph (EPG) simulations were performed to show the signal behaviors of iSSFP, bSSFP, and RF-spoiled gradient echo (SPGR) sequences. In vivo experiments were performed for brain and abdominal imaging at 3T with simultaneous multi-slice (SMS) acceleration factors of 2, 3 and 4 with CAIPI-iSSFP and CAIPI-bSSFP. The image quality was evaluated by measuring the relative contrast-to-noise ratio (CNR) and by qualitatively assessing banding artifact removal in the brain. Results: Banding artifacts were removed using CAIPI-iSSFP compared to CAIPI-bSSFP up to an SMS factor of 4 and 3 on brain and liver imaging, respectively. The relative CNRs between gray and white matter were on average 18% lower in CAIPI-iSSFP compared to that of CAIPI-bSSFP. Conclusion: This study demonstrated that CAIPI-iSSFP provides up to a factor of four acceleration, while minimizing the banding artifacts with up to a 20% decrease in the relative CNR.