• Title/Summary/Keyword: bandgap characteristics

Search Result 153, Processing Time 0.029 seconds

Operating Conditions Proposal of Bandgap Circuit at Cryogenic Temperature for Signal Processing of Infrared Detector and a Performance Analysis of a Manufactured Chip (적외선 탐색기 신호처리를 위한 극저온 밴드갭 회로 동작 조건 제안 및 제작된 칩의 성능 분석)

  • Kim Yon Kyu;Kang Sang-Gu;Lee Hee-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.59-65
    • /
    • 2004
  • A stable reference voltage generator is necessary to the infrared image signal readout circuit(ROIC) to improve noise characteristics of signal originated from infrared devices, that is, to gain good images. In this paper, bandgap circuit operating at cryogenic temperature of 77K for Infrared image ROIC(readout integrated circuit) was first made. It demonstrates practical use possibility through taking measurements and estimations. Bandgap circuit is a representative voltage reference circuit. Most of bandgap reference circuits which are presented so far operate at room temperature, and their characteristic are not suitable for infrared image ROIC operating at liquid nitrogen temperature, 77K. To design bandgap circuit operating at cryogenic temperature, suitable circuit is selected and the parameter characteristics of used devices as temperature change are seen by a theoretical study and fitted at liquid temperature with considering such characteristics. This circuit has been fabricated in the Hynix 0.6um standard CMOS process, and the output voltage measured shows that the stability is 1.042±0.0015V over the temperature range of 60K to 110K and is better than bandgap circuits operated at room temperature.

Recent Advances in the Development of High-Efficiency All-Perovskite Tandem Solar Cells (고효율 페로브스카이트-페로브스카이트 탠덤 태양전지의 연구 개발 동향)

  • Jaehyeok Koh;Chaeyoun Kim;Seongju Park;Dayeon Woo;Byungha Shin
    • Current Photovoltaic Research
    • /
    • v.12 no.3
    • /
    • pp.61-73
    • /
    • 2024
  • All-perovskite tandem solar cells have been developed as a next-generation solar cell technology to surpass the efficiency limits of single-junction solar cells. By using perovskite materials with different bandgaps in the top and bottom cells, these tandem solar cells can effectively utilize a wider range of the solar spectrum. All-perovskite tandem solar cells have been focused as a next-generation solar cell due to their ability to achieve high efficiency while being manufactured through low-cost solution processing. This paper focuses on key components for improving the performance of all-perovskite tandem solar cells and essential components: wide bandgap perovskite solar cells, narrow bandgap perovskite solar cells, and charge recombination layers. The characteristics, main challenges, and strategies for overcoming these issues are discussed. For wide bandgap perovskites, efficiency is reduced by high trap densities and halide ion phase segregation. Improvement methods through additives and surface passivation are proposed to overcome these issues. In narrow bandgap perovskites, composition control and surface treatment techniques are being developed to reduce the oxidation of Sn-based materials and charge recombination in the perovskite. Additionally, the charge recombination layer is an essential component for efficient electron-hole recombination and minimizing optical losses, with materials such as transparent conductive oxides and ultrathin metals being used. These studies make a significant contribution to enhancing the efficiency and stability of all-perovskite tandem solar cells and suggest future research directions for commercialization.

Bandgap Alteration of Transparent Zinc Oxide Thin Film with Mg Dopant

  • Salina, M.;Ahmad, R.;Suriani, A.B.;Rusop, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.64-68
    • /
    • 2012
  • We have successfully demonstrated a bandgap alteration of transparent zinc oxide (ZnO) thin film with Mg dopant by using sol-gel spin coating technique. By increasing the dopant from 0 to 30 atomic percent (at.%), a decrement value in the cutoff is observed, where the absorption edge shifts continuously to the shorter wavelength side, towards 300 nm. This resulted in a significant bandgap increment from 3.28 to 3.57 eV. However, the transmittance of the thin film at 350-800 nm gradually downgraded, from 93 to 80 % which is most probably due to the grain size that becomes bigger, and it also affected the electrical properties. The decrement from 45 to 0.05 mA at +10 V was observed in the I-V characteristics, concluding the significant relationship; where higher optical bandgap materials will exhibit lower conductivity. These findings may be useful in optoelectronics devices.

A Research of the Characteristics of $Hg_{1-x}Cd_{x}$Te material by using Electro - Chemical Reduction (Electro-Chemical Reduction에 의한 $Hg_{1-x}Cd_{x}$Te재료의 특성 고찰)

  • 이상돈;김봉흡;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.38-41
    • /
    • 1994
  • The method of passivation for protecting the $Hg_{1-x}Cd_{x}$Te surface is important device fabrication process. Because the surface components are highly reactive leading to its chemical and electrical instability. Especially. the material of detecting for infrared radiation, of which composition is x=0.2 or 0.3, is narrow bandgap semi- conductor. The narrow bandgap semi conductors are largely governed by the properties of the semiconductor surface. The narrow bandgap semi-conductors are largely governed by the properties of the semiconductor surface. The electro-chemical processing of $Hg_{1-x}Cd_{x}$Te allows rigorous control of the surface chemistry and provides an in-suit monitor of surface reaction. So electro-chemical reduction at specific potential can be selectively eliminated the undesirable species on the surface and mainpulated to reproducibly attain the desired stoichiometry. This method shows to assess the quality of chemically treated good $Hg_{1-x}Cd_{x}$Te surface.

  • PDF

Photonic Bandgap Bragg Fibers: A New Platform for Realizing application-specific Specialty Optical Fibers and Components

  • Pal, Bishnu P.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.02a
    • /
    • pp.87-88
    • /
    • 2006
  • Bragg fibers, consisting of a low index core (including air) surrounded by a series of periodic layers of alternate high and low refractive index materials, each being higher than that of the core, form a 1D photonic bandgap (PBG). In view of the multitude of individual physical parameters that characterize a Bragg fiber, they offer a wide choice of parametric avenues to tailor their propagation characteristics. Owing to their unique PBG guidance mechanism, Bragg fibers indeed exhibit unusual dispersion characteristics that are otherwise nearly impossible to achieve in conventional silica fibers. Solid core Bragg fibers, amenable to fabrication by the highly mature MCVD technology, could be designed to realize broadband supercontinuum light. This talk would review our recent works on modeling of propagation characteristics, dispersion tailoring in them for applications as metro as well as dispersion compensating fibers and also as supercontinuum light generators.

  • PDF

Simulation of Characteristics of Amorphous-Silicon Thin Film Transistor for Liquid Crystal Display Using the Mixed Simulator (혼합시뮬레이터를 사용한 액정 표시기용 비정질 실리콘 박막 트랜지스터의 특성 시뮬레이션)

  • 이상훈;김경호
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.122-129
    • /
    • 1995
  • The most important feature of a-Si TFT is dense localized states such as dangling bonds which exist in tis bandgap. Electrons trapped by localized states dominate the potential distribution in the active a-Si region ,and influence the performance of a-Si TFT. In this paper, we describe the electrical characteristics of a-Si TFT with respect to trap distribution within bandgap, electron mobility and interface states using 2-Dimensional device simulator and compare the result of simulation with measurements. Using the mixed-mode simulator, we can predict the potential variation of pixel which causes residual image problem during the turn-off of a-Si TFT driving circuit. Therefore it is possible to consider trade-off between potential variation of pixel and turn-on current of a-Si TFT for the optimized driving circuit.

  • PDF

Analysis of Microstrip Bandstop Filter Based on the Photonic Bandgap(PBG) Structure Using FDTD (FDTD를 이용한 PBG 구조를 갖는 마이크로스트립 대역저지 여파기에 관한 분석)

  • Ho, Jin-Key;Yun, Young-Seol;Park, Sang-Hyun;Choi, Young-Wan;Kim, Hyeong-Seok;Kim, Ho-Seong
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.1
    • /
    • pp.52-62
    • /
    • 2003
  • In this paper, photonic bandgap(PBG) bandstop filters which are composed of periodically etched circles in the ground plane show good microwave characteristics with the harmonic suppression on stopband. The PBG structures were analyzed using a finite-difference time-domain(FDTD) simulation and experimental measurement. The FDTD technique is used because it can simulate arbitrary 3-D structures and provide broadband frequency response. The analysis results are presented it is the same that only one row of etched circles and 2-dimension three rows of etched circles. And we show the PBG resonator characteristics between etched circles using field pattern and frequency characteristics as functions of etched circle number n, etched circle radius r and period a.

  • PDF

Design and Implementation of an Optimal Hardware for a Stable Operating of Wide Bandgap Devices (Wide Bandgap 소자의 안정적 구동을 위한 하드웨어 최적 설계 및 구현)

  • Kim, Dong-Sik;Joo, Dong-Myoung;Lee, Byoung-Kuk;Kim, Jong-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.88-96
    • /
    • 2016
  • In this paper, the GaN FET based phase-shift full-bridge dc-dc converter design is implemented. Switch characteristics of GaN FET were analyzed in detail by comparing state-of-the-art Si MOSFET. Owing to the low conduction resistance and parasitic capacitance, it is expected to GaN FET based power conversion system has improved performance. However, GaN FET is vulnerable to electric interference due to the relatively low threshold voltage and fast switching transient. Therefore, it is necessary to consider PCB layout to design GaN FET based power system because PCB layout is the main reason of stray inductance. To reduce the electric noise, gate voltage of GaN FET is analyzed according to operation mode of phase-shift full-bridge dc-dc converter. Two 600W phase-shifted full-bridge dc-dc converter are designed based on the result to evaluate effects of stray inductance.

Fabrication and Characteristics of a-SiNx:H Thin Films (a-SiNx:H 박막의 제조 및 특성)

  • Park, Wug-Dong;Kim, Young-Jin;Kim, Ki-Wan
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.58-63
    • /
    • 1995
  • The effects of substrate temperature, RF power, and $NH_{3}/SiH_{4}$ gas flow ratio on the dielectric constant and optical bandgap of amorphous silicon nitride (a-SiNx:H) thin films prepared by PECVD method using RF glow discharge decomposition of $SiH_{4}$ and $NH_{3}$ gas mixtures have been studied. The dielectric constant and optical bandgap of a-SiNx:H thin films were greatly exchanged as by increasing substrate temperature, RF power, and $NH_{3}/SiH_{4}$ gas flow ratio. The dielectric constant of a-SiNx:H films was increased and optical bandgap of a-SiNx:H films was decreased as the substrate temperature was increased. When the substrate temperature, RF power, gas pressure, $NH_{3}/SiH_{4}$ gas flow ratio, and thickness were $250^{\circ}C$, 20 W, 500 mTorr, 10 and $1500\;{\AA}$, respectively, the dielectric constant, breakdown field and optical bandgap of a-SiNx:H film were 4.3, 1 MV/cm, and 2.9 eV, respectively.

  • PDF

Start-up circuit with wide supply swing voltage range and modified power-up characteristic for bandgap reference voltage generator. (넓은 전압 범위와 개선된 파워-업 특성을 가지는 밴드갭 기준전압 발생기의 스타트-업 회로)

  • Sung, Kwang-Young;Kim, Jong-Hee;Kim, Tae-Ho;Vu, Cao Tuan;Lee, Jae-Hyung;Lim, Gyu-Ho;Park, Mu-Hum;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1544-1551
    • /
    • 2007
  • A start-up circuit of the bandgap reference voltage generator of cascode current mirror type with wide operating voltage range and enhanced power-up characteristics is proposed in the paper. It is confirmed by simulation that the newly proposed start-up circuit does not affect the operation of the bandgap reference voltage generatory even though the supply voltage(VDDA) is higher and has more stable power-up characteristic than the conventional start-up circuit. Test chips are designed and fabricated with $0.18{\mu}m$ tripple well CMOS process and their test has been completed. The mean value of measured the reference voltage(Vref) is 738mV and The three sigma value($3{\sigma}$) is 29.88mV.