• Title/Summary/Keyword: band-width efficiency

Search Result 64, Processing Time 0.139 seconds

The Analysis of the Breakdown Voltage according to the Change of JTE Structures and Design Parameters of 4H-SiC Devices (4H-SiC 소자의 JTE 구조 및 설계 조건 변화에 따른 항복전압 분석)

  • Koo, Yoon-Mo;Cho, Doo-Hyung;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.491-499
    • /
    • 2015
  • Silicon Carbide(SiC) has large advantage in high temperature and high voltage applications because of its high thermal conductivity and large band gap energy. When using SiC to design power semiconductor devices, edge termination techniques have to be adjusted for its maximum breakdown voltage characteristics. Many edge termination techniques have been proposed, and the most appropriate technique for SiC device is Junction Termination Extension(JTE). In this paper, the change of breakdown voltage efficiency ratio according to the change of doping concentration and passivation oxide charge of each JTE techniques is demonstrated. As a result, the maximum breakdown voltage ratio of Single Zone JTE(SZ-JTE), Double Zone JTE(DZ-JTE), Multiple Floating Zone JTE(MFZ-JTE), and Space Modulated JTE(SM-JTE) is 98.24%, 99.02%, 98.98%, 99.22% each. MFZ-JTE has the smallest and SZ-JTE has the largest sensitivity of breakdown voltage ratios according to the change of JTE doping concentration. Additionally the degradation of breakdown voltage due to the passivation oxide charge is analyzed, and the sensitivity is largest in SZ-JTE and smallest in MFZ-JTE, too. In this paper, DZ-JTE and SM-JTE is the best efficiency JTE techniques than MFZ-JTE which needs large doping concentration in short JTE width.

Fabrication of Schottky Device Using Lead Sulfide Colloidal Quantum Dot

  • Kim, Jun-Kwan;Song, Jung-Hoon;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.189-189
    • /
    • 2012
  • Lead sulfide (PbS) nanocrystal quantum dots (NQDs) are promising materials for various optoelectronic devices, especially solar cells, because of their tunability of the optical band-gap controlled by adjusting the diameter of NQDs. PbS is a IV-VI semiconductor enabling infrared-absorption and it can be synthesized using solution process methods. A wide choice of the diameter of PbS NQDs is also a benefit to achieve the quantum confinement regime due to its large Bohr exciton radius (20 nm). To exploit these desirable properties, many research groups have intensively studied to apply for the photovoltaic devices. There are several essential requirements to fabricate the efficient NQDs-based solar cell. First of all, highly confined PbS QDs should be synthesized resulting in a narrow peak with a small full width-half maximum value at the first exciton transition observed in UV-Vis absorbance and photoluminescence spectra. In other words, the size-uniformity of NQDs ought to secure under 5%. Second, PbS NQDs should be assembled carefully in order to enhance the electronic coupling between adjacent NQDs by controlling the inter-QDs distance. Finally, appropriate structure for the photovoltaic device is the key issue to extract the photo-generated carriers from light-absorbing layer in solar cell. In this step, workfunction and Fermi energy difference could be precisely considered for Schottky and hetero junction device, respectively. In this presentation, we introduce the strategy to obtain high performance solar cell fabricated using PbS NQDs below the size of the Bohr radius. The PbS NQDs with various diameters were synthesized using methods established by Hines with a few modifications. PbS NQDs solids were assembled using layer-by-layer spin-coating method. Subsequent ligand-exchange was carried out using 1,2-ethanedithiol (EDT) to reduce inter-NQDs distance. Finally, Schottky junction solar cells were fabricated on ITO-coated glass and 150 nm-thick Al was deposited on the top of PbS NQDs solids as a top electrode using thermal evaporation technique. To evaluate the solar cell performance, current-voltage (I-V) measurement were performed under AM 1.5G solar spectrum at 1 sun intensity. As a result, we could achieve the power conversion efficiency of 3.33% at Schottky junction solar cell. This result indicates that high performance solar cell is successfully fabricated by optimizing the all steps as mentioned above in this work.

  • PDF

Performance evaluation using BER/SNR of wearable fabric reconfigurable beam-steering antenna for On/Off-body communication systems (On/Off-body 통신시스템을 위한 직물소재 웨어러블 재구성 빔 스티어링 안테나의 BER/SNR 성능 검증)

  • Kang, Seonghun;Jeong, Sangsoo;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4842-4848
    • /
    • 2015
  • This paper presents a comparison of communication performance between the reconfigurable beam-steering antenna and the omni-directional (loop) antenna during standstill and walking motion. Both omni-directional and reconfigurable antennas were manufactured on the same fabric (${\varepsilon}_r=1.35$, $tqn{\delta}=0.02$) substrate and operated around 5 GHz band. The reconfigurable antenna was designed to steer the beam directions. To implement the beam-steering capability, the antenna used two PIN diodes. The measured peak gains were 5.9-6.6 dBi and the overall half power beam width (HPBW) was $102^{\circ}$. In order to compare the communication efficiency, both the bit error rate (BER) and the signal-to-noise ratio (SNR) were measured using a GNU Radio Companion software tool and user software radio peripheral (USRP) devices. The measurement were performed when both antennas were standstill and walking motion in an antenna chamber as well as in a smart home environment. From these results, the performances of the reconfigurable beam steering antenna outperformed that of the loop antenna. In addition, in terms of communication efficiencies, in an antenna chamber was better than in a smart home environment. In terms of movement of antennas, standstill state has better results than walking motion state.

Characteristic Study of Small-sized and Planer Resonator for Mobile Device in Magnetic Wireless Power Transfer (소형 모바일 기기용 공진형 무선전력전송 시스템의 공진기 평면화 및 소형화에 따른 특성 연구)

  • Lee, Hoon-Hee;Jung, Chang-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.16-21
    • /
    • 2017
  • In this paper, a Small-sized and planer resonator design of Magnetic Resonance - Wireless Power Transfer(MR-WPT) were proposed for practical applications of mobile devices, such as a laptop, a smart-phone and a tablet pc. The proposed MR-WPT system were based on four coil MR-WPT and designed as a transmitter part (Tx) and a receiver part (Rx) both are the same shape with the same loop and resonator. There are four different spiral coil type of resonators with variable of line length, width, gap and turns in $50mm{\times}50mm$ size. The both of top and bottom side of substrate(acrylic; ${\varepsilon}_r=2.56$, tan ${\delta}=0.008$) ere used to generate high inductance and capacitance in limited small volume. Loops were designed on the same plane of resonator to reduce their volume, and there are three different size. The proposed MR-WPT system were fabricated with two acrylic substrate plane of Tx and Rx each, the Rx and Tx loops and resonators were fabricated of copper sheets. There are 12 combinations of 3 loops and 4 resonators, each combination were measured to calculate transfer efficiency and resonance frequency in transfer distance from 1cm to 5cm. The measured results, the highest transfer efficiency was about 70%, and average transfer efficiency was 40%, on the resonance frequency was about 6.78 MHz, which is standard band by A4WP. We proposed small-sized and planer resonator of MR-WPT and showed possibility of mobile applications for small devices.