• Title/Summary/Keyword: band power

Search Result 2,665, Processing Time 0.026 seconds

The Coexistence of OFDM-Based Systems Beyond 3G with Fixed Service Microwave Systems

  • Jo Han-Shin;Yoon Hyun-Goo;Lim Jae-Woo;Chung Woo-Ghee;Yook Jong-Gwan;Park Han-Kyu
    • Journal of Communications and Networks
    • /
    • v.8 no.2
    • /
    • pp.187-193
    • /
    • 2006
  • In this paper, we study the coexistence of orthogonal frequency division multiplexing (OFDM)-based systems beyond 3G (B3G) and point-to-point (P-P) fixed service (FS) microwave systems. The advanced general analytical model derived via a power spectral density (PSD) analysis proposed in this paper has two advantages in comparison with the conventional minimum coupling loss (MCL) method. First, the interfering signal power that appears in the band of a victim system can be easily assessed without a spectrum emission mask. Second, when transmit power is not allocated to some subcarriers overlapping the band of the victim system in order to mitigate B3G OFDM-based systems interference with other systems, the general analytical model can successfully assess the interference from the B3G systems into FS systems, whereas the MCL method incorporating the spectrum emission mask cannot be applied in the presence of the same interference condition. The proposed model can be derived in a closed form and is simply implemented with the help of simulation, and thus the solution can be obtained in significantly reduced time. Through application of the proposed model, coexistence results are analyzed in a co-channel and adjacent channel with respect to guard band and minimum separation distance.

Cramer-Rao Lower Bound of Effective Carrier-to-noise Power Ratio Estimation for a GPS L1 C/A Signal under Band-limited White Noise Jamming Environments (대역제한 백색잡음 재밍환경에서 GPS L1 C/A 신호를 위한 유효 반송파 대 잡음 전력비 추정치의 CRLB)

  • Yoo, Seungsoo;Yeom, Dong-Jin;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.890-894
    • /
    • 2014
  • In this paper, we derive the CRLB (Cramer-Rao Lower Bound) of effective carrier-to-noise power ratio ($C/N_0$) estimation for a GPS (Global Positioning System) L1 C/A (Coarse/Acquisition) signal under band-limited white noise jamming environments. The quality of a received GPS signal is commonly described in terms of its $C/N_0$, implying that the noise is white and thus can be described by scalar noise density. However, if some intentional interference is received to a victim GPS receiver, then the $C/N_0$ is no longer the efficacious performance indicator. The correct and straightforward measurement to analyze the receiving situation is the effective $C/N_0$. In this paper, we consider a band-limited white noise jamming whose bandwidth is 2MHz and is the same as one of the first null-to-null bandwidth of the GPS L1 C/A signal.

Transmit-receive Module for Ka-band Seekers using Multi-layered Liquid Crystal Polymer Substrates (다층 액정폴리머 기판을 이용한 Ka대역 탐색기용 송수신 모듈)

  • Choi, Sehwan;Ryu, Jongin;Lee, Jaeyoung;Lee, Jiyeon;Nam, ByungChang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.63-70
    • /
    • 2020
  • In this paper, the transmit-receive module for military seekers has been designed and fabricated in 35 GHz. To increase the performance of substrates and high integration of circuits in millimeter-wave band, a 4-layer LCP(Liquid Crystal Polymer) substrate was developed. This substrate was implemented with three FCCL substrates and two adhesive layers, and a process using the difference in melting point between the substrates was used for lamination. Using a strip line and a microstrip line was confirmed by the transmission loss along the length of the substrate, and the performance of LCP substrates was validated with a power divider in 35 GHz. After confirming the performance of individual blocks such as power amplifier and low noise amplifier, a single channel Ka-band transmission/reception module was developed using a 4-layer liquid crystal polymer substrate. The transmit power of this module has above 1.1W in pulse duty 10% and has an output power of 1.1W and it has receive noise figure less than 8.5 dB and receive gain more than 17.6 dB.

A Development of the X-Band 63 Watt Pulsed SSPA for Radar (레이더용 X-대역 63 Watt Pulsed SSPA 개발)

  • Chong, Min-Kil;Na, Hyung-Gi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.380-388
    • /
    • 2011
  • In this paper, we developed the X-band 63 watt pulsed SSPA(Solid State Power Amplifier) by using HMIC(Hybrid Microwave Integrated Circuits). The pulsed SSPA consists of power supply and 3-stage amplifier modules : pre-amplifier stage, driver-amplifier stage, final-amplifier stage. The developed pulsed SSPA provides more than 63 watts of output power with a short pulse width and the duty cycle of up to 1.2 % at $70^{\circ}C$. The fabricated module offers great than 37 dB of saturated gain across the operating band. Input and output VSWR is <1.5:1. This module has an average current of 400 mA typical and operates at a +28 $V_{dc}$ supply. The developed SSPA in this paper can apply to pulsed Doppler radar with high speed operation.

Development of SSPA-based X-band Transmitter with Graceful Degradation (점진적 성능저하 기능을 가지는 X-대역 SSPA 송신장치 개발)

  • Song, Hyeong-Min;Kim, Ji-Deok;Kang, Hyun-Chul;Song, Jae-Gyeong;Park, Chul-Soon;Rhee, Kye-Jin;Lee, Choung-Hyun;Kim, Dong-Gil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.853-862
    • /
    • 2019
  • In this paper, we designed a 4.5kW X-band SSPA transmitter to replace the TWTA search radar transmitter with low MTBF and high maintenance cost. The transmitter is designed for the performance of over 520W average transmission output and 4.0kW maximum transmission output. In particular, by implementing a graceful degradation, it is designed to maintain better performance than conventional TWTA transmitter up to 40% (13 assembly modules) failure level of 200W power amplifier assembly. Through an experiment on the effective range of X-band, the performance of proposed transmitter verified the values of the maximum transmission output 6.1kW, spurious output 69.16dBc, RF pulse rising time 15.2ns and RF pulse falling time 16.3ns. The experiment confirmed the change of output power according to the graceful degradation due to fault injection.

A Systematic Power Factor Improvement Method for an Electro Acoustic Transducer with Low Coupled Dual Resonances (상호 결합이 적은 두 개의 공진점을 갖는 광대역 전기 음향 변화기를 위한 역률 개선 회로 설계 방법 연구)

  • Lim, Jun-Seok;Pyeon, Yong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.7
    • /
    • pp.480-486
    • /
    • 2012
  • In the design of electro acoustic transducer, power factor improvement circuit is more required rather than impedance matching if the driving power amplifier has little inner resistance. Many research results have been focused on the power matching circuit designing for transferring maximum power in the wideband. There are few results in the designing study on the power factor improvement for the wide band electro acoustic transducer. In this paper, we propose a new design method on the power factor improvement for the wide band electro acoustic transducer. The proposed method consists of two steps, the chebyschev matching method and the constrained optimization, respectively.

The Design and Experiment of Power Factor Improvement Circuit for a Underwater Electro Acoustic Transducer with Low Coupled Dual Resonances (상호 결합이 적은 두 개의 공진점을 갖는 수중용 광대역 전기 음향 변화기를 위한 역률 개선 회로 설계 및 실험)

  • Lim, Jun-Seok;Pyeon, Yong-Guk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.12
    • /
    • pp.967-975
    • /
    • 2013
  • In the design of underwater electro acoustic transducer, power factor improvement circuit is more required rather than impedance matching if the driving power amplifier has little inner resistance. Many research results have been focused on the power matching circuit designing for transferring maximum power in the wideband. There are few results in the designing study on the power factor improvement for the wide band underwater electro acoustic transducer. In this paper, we set up a new design method on the power factor improvement for the wide band electro acoustic transducer, and confirm its feasibility by the experiments.

Improvement of extinction ratio of amplified pulses by incorporating a nonlinear optical loop mirror (EDFA로 증폭된 고출력 펄스 신호의 소광비 향상)

  • Kim, Byung-Jun;Choi, Hyun-Beom;Lee, Han-Hyub;Lee, Dong-Han;Kim, Dae-Yun;Kwon, Il-Bum
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.189-193
    • /
    • 2003
  • A two-stage erbium-doped fiber amplifier (EDFA) with a band pass filter is used to get optical pulses of high peak value. The pulse signal has a 32 ㏈ extinction ratio, 125 W peak power and 79 ㎽ pulse off power. A nonlinear optical loop mirror (NOLM) is used to lower the pulse off power so as to increase the extinction ratio. The pulse signal after the NOLM has a 50.4 ㏈ extinction ratio, 35 W peak power and 0.3 ㎽ pulse off power.

Wave energy converter by using relative heave motion between buoy and inner dynamic system

  • Cho, I.H.;Kim, M.H.;Kweon, H.M.
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.297-314
    • /
    • 2012
  • Power-take-off through inner dynamic system inside a floating buoy is suggested. The power take-off system is characterized by mass, stiffness, and damping and generates power through the relative heave motion between the buoy and inner mass (magnet or amateur). A systematic hydrodynamic theory is developed for the suggested WEC and the developed theory is illustrated by a case study. A vertical truncated cylinder is selected as a buoy and the optimal condition of the inner dynamic system for maximum PTO (power take off) through double resonance for the given wave condition is systematically investigated. Through the case study, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC theory. However, the band-width of high performance region is not necessarily the greatest at the optimal (maximum-power-take-off) condition, so it has to be taken into consideration in the actual design of the WEC.

A Single Transistor-Level Direct-Conversion Mixer for Low-Voltage Low-Power Multi-band Radios

  • Choi, Byoung-Gun;Hyun, Seok-Bong;Tak, Geum-Young;Lee, Hee-Tae;Park, Seong-Su;Park, Chul-Soon
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.579-584
    • /
    • 2005
  • A CMOS direct-conversion mixer with a single transistor-level topology is proposed in this paper. Since the single transistor-level topology needs smaller supply voltage than the conventional Gilbert-cell topology, the proposed mixer structure is suitable for a low power and highly integrated RF system-on-a-chip (SoC). The proposed direct-conversion mixer is designed for the multi-band ultra-wideband (UWB) system covering from 3 to 7 GHz. The conversion gain and input P1dB of the mixer are about 3 dB and -10 dBm, respectively, with multi-band RF signals. The mixer consumes 4.3 mA under a 1.8 V supply voltage.

  • PDF