• Title/Summary/Keyword: band power

Search Result 2,654, Processing Time 0.035 seconds

V-Band Power Amplifier MMIC with Excellent Gain-Flatness (광대역의 우수한 이득평탄도를 갖는 V-밴드 전력증폭기 MMIC)

  • Chang, Woo-Jin;Ji, Hong-Gu;Lim, Jong-Won;Ahn, Ho-Kyun;Kim, Hae-Cheon;Oh, Seung-Hyueb
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.623-624
    • /
    • 2006
  • In this paper, we introduce the design and fabrication of V-band power amplifier MMIC with excellent gain-flatness for IEEE 802.15.3c WPAN system. The V-band power amplifier was designed using ETRI' $0.12{\mu}m$ PHEMT process. The PHEMT shows a peak transconductance ($G_{m,peak}$) of 500 mS/mm, a threshold voltage of -1.2 V, and a drain saturation current of 49 mA for 2 fingers and $100{\mu}m$ total gate width (2f100) at $V_{ds}$=2 V. The RF characteristics of the PHEMT show a cutoff frequency, $f_T$, of 97 GHz, and a maximum oscillation frequency, $f_{max}$, of 166 GHz. The gains of the each stages of the amplifier were modified to have broadband characteristics of input/output matching for first and fourth stages and get more gains of edge regions of operating frequency range for second and third stages in order to make the gain-flatness of the amplifier excellently for wide band. The performances of the fabricated 60 GHz power amplifier MMIC are operating frequency of $56.25{\sim}62.25\;GHz$, bandwidth of 6 GHz, small signal gain ($S_{21}$) of $16.5{\sim}17.2\;dB$, gain flatness of 0.7 dB, an input reflection coefficient ($S_{11}$) of $-16{\sim}-9\;dB$, output reflection coefficient ($S_{22}$) of $-16{\sim}-4\;dB$ and output power ($P_{out}$) of 13 dBm. The chip size of the amplifier MMIC was $3.7{\times}1.4mm^2$.

  • PDF

Development of the Ka-band 20watt SSPA (Solid State Power Amplifier) Using a Spatial Combiner (공간결합기를 이용한 Ka대역 20W급 SSPA 개발)

  • Choi, Young-Rak;Lee, Jong-Woo;Lee, Su-Hyun;An, Se-Hwan;Lee, Man-Hee;Kim, Hong-Rak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.231-238
    • /
    • 2019
  • In this paper, we have studied how to improve the amplifiers efficiency by minimizing the combining loss when several unit power amplifiers are combined to obtain high output power. Specifically, we have developed Ka-band Spatial Combining Amplifier. The fabricated Spatial Combining Amplifier is a Ka-band 20W class SSPA, which uses a 5W class unit amplifier module 8EA designed using a GaN bare die. We also combined The unit amplifier module using 8-way spatial divider and combiner with a hybrid radial structure. The output combining loss of the fabricated spatial coupler is about 0.334dB, which is about 92.6% efficiency. In this paper, we developed a Spatial Combining Amplifier with a maximum saturation output of 10W and a power addition efficiency of over 15%. As a result, we achieved the maximum saturation output of 30W and the power addition efficiency of 19%.

Development of High power Threat Signal Simulator and Interfacing Tracking Radar (고출력 위협신호 모의장치 개발 및 추적레이다 연동)

  • Kwak, Yong-Kil
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.85-90
    • /
    • 2022
  • In this study, in order to test the performance of the aircraft system, a threat signal simulator that can transmit a signal similar to the actual threat to the aircraft under test with high power was designed. The high-power threat signal simulator should be able to transmit broadband (UHF band, L band, S band, X band) communication signals and radar signals, and control to transmit signals accurately directed to the aircraft through interfacing tracking radar. The signal strength of the developed equipment is 63 dBm to 93 dBm or more depending on type of signal, and the tracking precision is less than 0.1 degree, which satisfies the required performance. And it was confirmed that the antenna of the high-power threat signal simulator can accurately direct the signal to the aircraft position through the tracking radar interfacing.

Design Technology of the Wideband Power Amplifier for Electromagnetic Susceptibility Measurement (EMS 측정용 광대역 전력 증폭기 설계기술에 관한 연구)

  • 조광윤;류근관;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1464-1471
    • /
    • 1999
  • A wide-band high power amplifier to use for radiated electromagnetic field immunity testing of EMS(Electromagnetic Susceptibility) standards has to meet IEC1000-4-3 specification in the frequency bandwidth of 80MHz to 1000MHz. The power amplifier to be described in this paper consists of driving and power stages with wide-band matched circuits by estimated impedances. The mismatching protection circuit is inserted in it to prevent from damage of power device when the output port of power amplifier is opened or shorted by user's mistake. The characteristics of the power amplifier are obtained output power over 100watts, gain over 40dB and flatness of $\pm$0.3dB in the frequency range of 80 ~300MHz. The harmonics suppression characteristics is measured over 20dBc. This wide-band high power amplifier can be useful fur radiated electromagnetic field immunity testing of IEC 1000-4-3 standard.

  • PDF

UHF-Band 1 kW Solid State Pulsed Power Amplifier for Thermoacoustic Imaging Application (열음향 응용을 위한 1 kW급 UHF 대역 반도체 펄스 전력증폭기)

  • Lee, Seung-Min;Park, Seung-Pyo;Choi, Seung-Bum;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.92-95
    • /
    • 2016
  • In this paper, an UHF-band 1 kW solid-state pulsed power amplifier was designed and implemented for the thermoacoustic imaging(TAI) at 900 MHz. The designed power amplifier has a pulse width of $80{\mu}s$ and a duty cycle of 1 % for short-pulse operation. The overall amplifier was implemented by combining of 16 single-power amplifiers adopting MRFE6P9220HR3 LDMOSFET using wilkinson power dividers. The solid-state pulsed power amplifier shows 25 % drain efficiency with a gain of 76.2 dB when the output power is 60.2 dBm for a -16 dBm input power at center frequency.

Investigation of Pump Wavelength Dependence of Long-Wavelength-Band Erbium-Doped Fiber Amplifier using 1530nm-Band Pump (L 대역 EDFA 특성의 펌프 파장 의존성에 관한 연구)

  • Choi, Bo-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1249-1255
    • /
    • 2008
  • 1530nm band has been studied as pump wavelength for long-wavelength-band erbium-doped fiber amplifier (L-band EDFA). The pump source is built using a tunable light source and cascaded conventional-band (C-band) EDFA. The L-band EDFA uses a forward pumping scheme. Within the 1530nm band, 1545nm pump demonstrates 0.45dB/mW gain coefficient, which is twice better than that of conventional 1480nm pumped EDFA. The noise figure of 1530nm pump is at worst 6.36dB, which is 0.75dB higher than that of 1480nm pumped EDFA. Such high gain coefficient indicates that the L-band EDFA consumes low power.

A Compact Ka-Band Doppler Radar Sensor for Remote Human Vital Signal Detection

  • Han, Janghoon;Kim, Jeong-Geun;Hong, Songcheol
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.234-239
    • /
    • 2012
  • This paper presents a compact K-band Doppler radar sensor for human vital signal detection that uses a radar configuration with only single coupler. The proposed radar front-end configuration can reduce the chip size and the additional RF power loss. The radar front-end IC is composed of a Lange coupler, VCO, and single balanced mixer. The oscillation frequency of the VCO is from 27.3 to 27.8 GHz. The phase noise of the VCO is -91.2 dBc/Hz at a 1 MHz offset frequency, and the output power is -4.8 dBm. The conversion gain of the mixer is about 11 dB. The chip size is $0.89{\times}1.47mm^2$. The compact Ka-band Doppler radar system was developed in order to demonstrate remote human vital signal detection. The radar system consists of a Ka-band Doppler radar module with a $2{\times}2$ patch array antenna, baseband signal conditioning block, DAQ system, and signal processing program. The front-end module size is $2.5{\times}2.5cm^2$. The proposed radar sensor can properly capture a human heartbeat and respiration rate at the distance of 50 cm.

A Double Bi-Quad Filter with Wide-Band Resonance Suppression for Servo Systems

  • Luo, Xin;Shen, Anwen;Mao, Renchao
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1409-1420
    • /
    • 2015
  • In this paper, an algorithm using two bi-quad filters to suppress the wide-band resonance for PMSM servo systems is proposed. This algorithm is based on the double bi-quad filters structure, so it is named, "double bi-quad filter." The conventional single bi-quad filter method cannot suppress unexpected mechanical terms, which may lead to oscillations on the load side. A double bi-quad filter structure, which can cancel the effects of compliant coupling and suppress wide-band resonance, is realized by inserting a virtual filter after the motor speed output. In practical implementation, the proposed control structure is composed of two bi-quad filters on both the forward and feedback paths of the speed control loop. Both of them collectively complete the wide-band resonance suppression, and the filter on the feedback path can solve the oscillation on the load side. Meanwhile, with this approach, in certain cases, the servo system can be more robust than with the single bi-quad filter method. A step by step design procedure is provided for the proposed algorithm. Finally, its advantages are verified by theoretical analysis and experimental results.

A Dual Band Directional Coupler with Feedback Compensation Using Diplexer Structure (Diplexer 구조를 이용한 Dual Band 방향성 커플러)

  • Kim Ki-Joong;Park Ja-Young;Jeong Young-Hak;Bae Hyo-Gun;Kim Nam-Heung;Kim Hak-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.783-789
    • /
    • 2005
  • In this paper, a novel design and implementation of a dual-band directional coupler based on RF IPD(Integrated Passive Device)-on-glass technology is proposed, which can be adopted in GSM/GPRS cellular phones for closed loop power control at the output of the power amplifier. The proposed coupler has a compensation capacitor to improve the directivity, and was designed using a new diplexing structure to minimize the cross-band isolation.

Comparison of Antenna Parameters of R-/S-Band Standard Gain Horn Antennas

  • Kang, Jin-Seob;Kim, Jeong-Hwan;Park, Jeong-Il
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.4
    • /
    • pp.224-231
    • /
    • 2015
  • A comparison of the antenna parameters for R-band (1.7-2.6 GHz) and S-band (2.6-3.95 GHz) standard gain horn antennas has been performed by the Korea Research Institute of Standards and Science (KRISS), together with seven domestic participants from private companies and public institutions. Its purpose, as a proficiency test program of the 'Antenna Measurement Club' of KRISS, was to check equivalences in antenna parameter measurements between KRISS and the participants, particularly in the R-/S-band, to support antenna manufacturers and end users in Korea. The measurement parameters of this comparison are the power gain, radiation pattern, and reflection coefficient of the traveling standards for R-/S-band pyramidal standard gain horn antennas. The comparison used a gain comparison method and an extrapolation method to measure the power gain of the two traveling standards; the radiation patterns were measured in the far-field region of the transmitting and receiving antennas.