• 제목/요약/키워드: bamboo strand board

Search Result 5, Processing Time 0.018 seconds

담양산 왕대를 이용한 대나무 강화 복합보드의 제조 및 역학적 특성 평가 (I) - 대나무 스트랜드 보드의 물리적 특성 - (Mechanical Properties of Bamboo-reinforced Boards Manufactured with Phyllostachys bambusoides Growing in Damyang District (I) -- Physical Properties of Bamboo Strand Board --)

  • 소원택;박병대
    • 임산에너지
    • /
    • 제22권2호
    • /
    • pp.26-35
    • /
    • 2003
  • Bamboo strand board (BSB) was made with Phyllostachys banbusoides growing in Damyang district. Physical and mechanical properties of this BSB were summarized as follows; The specific gravity of BSB was 0.63∼0.79. Specific gravity decreased slightly with the thickness and length of BSB. Moisture content of BSB manufactured was 5.8∼6.9%. The absorption ate of BSB (42∼48%) did not show any relationship with the thickness and length of BSB. The thickness swelling rate of BSB was 13.9∼17.0%, relatively higher than any other panel products. Thickness swelling rate increased with the thickness of BSB, showing the strand thickness influenced much more on the rate of thickness swelling of BSB than the length of strand. The 3-point bending strength of BSB was 98∼126kgf/$\textrm{cm}^2$. Bending strength of showed the tendency of increase with the increased length of BSB, but with the decreased thickness. In particular, the length of BSB showed more effect on the increase of bending strength of BSB than the thickness of BSB. The compression strength perpendicular to BSB surface was 411 ∼ 465 kgf/$\textrm{cm}^2$, and the optimal length of strand for the 1mm- and 2mm-thickness of strand was 40mm and 60mm, respectively. Compression strength paralleled to BSD was 160∼221kgf/$\textrm{cm}^2$ and the optimal length of strand for the 2mm-thickness of strand appeared to be 60mm. The present work showed that appearance, physical and mechanical strength of BSB appeared quite positive in terms of board qualities, suggesting that bamboo would be appropriate for the production of board materials. In addition, our work showed that the crucial factor for determining the mechanical characteristics of BSB was the dimension of strand.

  • PDF

3개월생 국산 대나무를 이용한 대나무 스트랜드보드 개발 (Developement of Bamboo Strand Board Made from 3 Months Old Domesitic Bamboo Species)

  • 이화형;강석구;김관의
    • 한국가구학회지
    • /
    • 제11권2호
    • /
    • pp.45-53
    • /
    • 2000
  • This study was carried out to determine the suitability of 3 months old bamboo species of Phyllostachys bambusoides S. et Z., Phyllostachys Pubescens Mazel and Phyllostachys nigra var henonis Stapf as raw materials for the manufacture of strandboard. Total of 108 strandboards were made using urea-formaldehyde resin content level of 12% and one percent of liquid wax emulsion. The strandboard consisted of three layers the top and the bottom layer of which were oriented to the same direction and weighted 25% of the strandboard each. The middle core layer weighed 50% of the board and was perpendicular to the outer top and bottom layers. Analysis was performed to determine the effect of strand lengths and Uowing years of 3 months, 2 years and 3 years on strandboard properties. The physical and mechanical properties of bamboo species and boards were measured and compared to the standard requirements of strandboards. The results are as follows; 1. The more the growing years the higher the density of bamboo. Top part of bamboo indicated higher density value than that of bottom part. 2. Bamboo showed higher static bending strength compared to the main wood species. Longer growing years of bamboo generally inclosed the static tending strength out there were no statistical significancies for Phyllostachys bmbusoides S. et Z. and Phyllostachys pubescens Mazel. 3. Strand length indicated no difference on density and moisture content of strandboard. 5 cm of strand length gave the best static bending strength and internal bonding strength. Bamboo strandboard exhibited lesser extents of thickness swelling than that of CSA standard. 4. 3 months old bamboo gave higher static bending strength of strandboard than those of 2 years and 3 years old bamboo. In case of Phyllostachys nigra var henonis Stapf, 3 months old bamboo indicated higher internal bonding strength than those of 2 years and 3years old bamboo. but in Phyllostachys bambusoides S. et Z., Phyllostachys pubescens Mazel, there were no difference among growing years. Growing years showed no different physical properties of bamboo strandboard.

  • PDF

The Physical, Mechanical, and Sound Absorption Properties of Sandwich Particleboard (SPb)

  • ISWANTO, Apri Heri;HAKIM, Arif Rahman;AZHAR, Irawati;WIRJOSENTONO, Basuki;PRABUNINGRUM, Dita Sari
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권1호
    • /
    • pp.32-40
    • /
    • 2020
  • While the utilization of wood as a raw material in related industries has been increasing with the population increasing, the availability of wood from natural forests has continued to decline. An alternative to this situation is the manufacture of particleboard from non-wood lignocellulose materials through the modification of sandwich particleboard (SPb) using bamboo strands as reinforcement. In this study, strandsof belangke bamboo (Gigantochloa pruriens W) and tali bamboo (Gigantochloa apus) were utilized. The non-wood particles included sugar palm fibers, cornstalk, and sugarcane bagasse. The board was made in a three-layer composition of the face, back, and core in a ratio of 1: 2: 1. The binder used was 8% isocyanate resin. The sheet was pressed at a temperature of 160℃ for 5 min under a pressure of 3.0 N/㎟. Testing included physical and mechanical properties based on the JIS A 5908 (2003) standard, while acoustic testing was based on ISO 11654 (1997) standards. The results showed that using bamboo strands as reinforcement has an effect on the mechanical and physical properties of SPb. Almost all the types of boards met the JIS A 5908 (2003) standards, with the exception of thickness swelling (TS) and internal bond (IB) parameters. Based on the thickness swelling parameter, the C-type board exhibited the best properties. Overall, the B-type board thatused a belangke bamboo strand for the surface and sugarcane bagasse as the core underwent the best treatment. Based on the acoustical parameter, boards using a tali bamboo strand for the surface and sugar palm fiber as the core (E-type board) exhibited good sound absorption properties.

Effects of Steam Treatment on Physical and Mechanical Properties of Bamboo Oriented Strand Board

  • Maulana, Sena;Busyra, Imam;Fatrawana, Adesna;Hidayat, Wahyu;Sari, Rita Kartika;Sumardi, Ihak;Wistara, I Nyoman Jaya;Lee, Seung Hwan;Kim, Nam Hun;Febrianto, Fauzi
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권6호
    • /
    • pp.872-882
    • /
    • 2017
  • The objective of this study was to evaluate the properties of bamboo oriented strand board (B-OSB) from andong (Gigantochloa psedoarundinacea) and betung (Dendrocalamus asper) with and without steam treatment. Strands were steam-treated at $126^{\circ}C$ for 1 h under 0.14 MPa pressure. The extractive content of bamboo strands before and after steam treatment were determined according to a standard (TAPPI T 204 om-88). Three-layer B-OSB with the core layer perpendicular to the surface and back layers were formed and binded with 8% of phenol formaldehyde (PF) resin with the addition of 1% of wax. The evaluation of physical and mechanical properties of the boards were conducted in accordance with the JIS A 5908:2003 standard. The results showed that steam treatment of bamboo strands significantly reduced the extractive content. Steam treatment tended to increase the dimensional stability and mechanical properties of B-OSB from andong and betung. The results showed that the dimensional stability and bending strength of B-OSB from betung was higher than those of andong. The internal bond strength of B-OSB from andong was higher than betung owing to a greater amount of extractives dissolved during the steam treatment.

Destructive and Non-destructive Tests of Bamboo Oriented Strand Board under Various Shelling Ratios and Resin Contents

  • Maulana, Sena;Gumelar, Yuarsa;Fatrawana, Adesna;Maulana, Muhammad Iqbal;Hidayat, Wahyu;Sumardi, Ihak;Wistara, Nyoman Jaya;Lee, Seung Hwan;Kim, Nam Hun;Febrianto, Fauzi
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권4호
    • /
    • pp.519-532
    • /
    • 2019
  • The objectives of this study were to evaluate the effects of shelling ratio and resin content on the properties of bamboo oriented strand board (BOSB) from betung (Dendrocalamus asper) and to determine the correlation between the results of dynamic and static bending tests. Strands were steam-treated at $126^{\circ}C$ for 1 h under 0.14 MPa pressure and followed by washing with 1% NaOH solution. Three-layer BOSB with the core layer perpendicular to the surface was formed with shelling ratios (face:core ratio) of 30:70; 40:60; 50:50; 60:40 and binded with 7% and 8% of phenol formaldehyde (PF) resin with the addition of 1% of wax. The evaluation of physical and mechanical properties of BOSB was conducted in accordance with the JIS A 5908:2003 standard and the results were compared with CSA 0437.0 standard for commercial OSB (Grade O-1). Non-destructive testing was conducted using Metriguard Model 239A Stress Wave Timer which has a wave propagation time from 1 to $9,999{\mu}s$ and a resolution of $1{\mu}s$. BOSB with 8% resin content showed better physical and mechanical properties than those with 7% resin content. The increase of the face layer ratio improved the strength of BOSB in parallel direction to the grain. The results suggested that shelling ratio of 50:50 could be used as a simple way to reduce PF resin requirements from 8% to 7% and to meet the requirements of CSA 0437.0 standard. The results of non-destructive and destructive tests showed a strong correlation, suggesting that non-destructive test can be used to estimate the bending properties of BOSB.