• Title/Summary/Keyword: ball milling time

Search Result 231, Processing Time 0.022 seconds

Effects of the Mixing of an Active Material and a Conductive Additive on the Electric Double Layer Capacitor Performance in Organic Electrolyte

  • Yang, Inchan;Kwon, Soon Hyung;Kim, Bum-Soo;Kim, Sang-Gil;Lee, Byung-Jun;Kim, Myung-Soo;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.132-137
    • /
    • 2015
  • The effects of the mixing of an active material and a conductive additive on the electrochemical performance of an electric double layer capacitor (EDLC) electrode were investigated. Coin-type EDLC cells with an organic electrolyte were fabricated using the electrode samples with different ball-milling times for the mixing of an active material and a conductive additive. The ball-milling time had a strong influence on the electrochemical performance of the EDLC electrode. The homogeneous mixing of the active material and the conductive additive by ball-milling was very important to obtain an efficient EDLC electrode. However, an EDLC electrode with an excessive ball-milling time displayed low electrical conductivity due to the characteristic change of a conductive additive, leading to poor electrochemical performance. The mixing of an active material and a conductive additive played a crucial role in determining the electrochemical performance of EDLC electrode. The optimal ball-milling time contributed to a homogeneous mixing of an active material and a conductive additive, leading to good electrochemical performance of the EDLC electrode.

X-ray diffraction analysis of the effect of ball milling time on crystallinity of milled polyacrylonitrile-based carbon fiber

  • Lee, Sang-Hye;Kang, Dong-Su;Lee, Sang-Min;Roh, Jae-Seung
    • Carbon letters
    • /
    • v.26
    • /
    • pp.11-17
    • /
    • 2018
  • Milled carbon fiber (mCF) was prepared by a ball milling process, and X-ray diffraction (XRD) diffractograms were obtained by a $2{\theta}$ continuous scanning analysis to study mCF crystallinity as a function of milling time. The raw material for the mCF was polyacrylonitrile-based carbon fiber (T700). As the milling time increased, the mean particle size of the mCF consistently decreased, reaching $1.826{\mu}m$ at a milling time of 18 h. The XRD analysis showed that, as the milling time increased, the fraction of the crystalline carbon decreased, while the fraction of the amorphous carbon increased. The (002) peak became asymmetric before and after milling as the left side of the peak showed an increasingly gentle slope. For analysis, the asymmetric (002) peak was deconvoluted into two peaks, less-developed crystalline carbon (LDCC) and more-developed crystalline carbon. In both peaks, Lc decreased and $d_{002}$ increased, but no significant change was observed after 6 h of milling time. In addition, the fraction of LDCC increased. As the milling continued, the mCF became more amorphous, possibly due to damage to the crystal lattices by the milling.

The synthesis of $Nb_3Sn$ alloy powders by mechanical alloying (기계적 합금화 방법에 의한 $Nb_3Sn$합금 제조)

  • Lee, Sung-Man
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.464-467
    • /
    • 1996
  • The microstructural evolution during mechanical alloying of Nb and Sn powders, of average composition Nb3Sn, has been investigated by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Observations by SEM showed a progressive change of milling time. From the XRD studies, the structural development with milling time depends on the ball size for a given powder/ball ratio. Using a larger ball of 9.5mm diameter, the elemental powders initially alloy mechanically to form an A15 structure phase, and then amorphised with continued milling. However, in case of milling with a smaller ball of 3.968mm diameter, an amorphous phase is first formed. These results can be understood by considering the dependence of the milling energy on the ball size. The homogeneous stoichiometric $Nb_3Sn$ phase could be easily obtained by heat treatment of a supersaturated solid solution produced by MA. Heat treatment of an amorphous phase formed by MA resulted in the mixture of the $Nb_3Sn$ and $Nb_6Sn_5$ phases.

  • PDF

Effect of Ball-milling on Hydrogen-reduction Behavior of WO3-CuO (WO3-CuO의 수소환원거동에 미치는 볼 밀링의 영향)

  • Kim, Dae-Gun;Shim, Woo-Seok;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.631-634
    • /
    • 2003
  • To fabricate W-Cu nanocomposite powder, $WO_3$-CuO powder mixture was high-energetically ball-milled and subsequently hydrogen-reduced. The effect of ball-milling on the hydrogen-reduction behavior of$ WO_3$-CuO was investigated with non-isothermal hygrometric analysis during hydrogen-reduction. Increasing the ball-milling time, the reduction peak temperatures of humidity curves were shifted to low temperature. It was considered that the reduction temperature should be decreased because the specific surface area of each oxide considerably increased with increasing the ball-milling time. In case of ball-milling for 0 h, $WO_3$and CuO were independently hydrogen-reduced and W particles were nucleated on the surface of Cu adjacent to W by CVT. However, in case of ball-milling for 50 h, the aggregates of about 200-300 nm were observed. W particles of size below 30-50 nm were homogeneously distributed with Cu in the aggregates.

Fabrication of Aluminium Flake Powder by Ball Milling Process (볼밀링에 의한 알루미늄 프레이크 분말 제조)

  • 이동원
    • Journal of Powder Materials
    • /
    • v.3 no.3
    • /
    • pp.159-166
    • /
    • 1996
  • A series of test were undertaken in order to estabilish the effect of different milling variables on dimension and quality of aluminium flake powder. Milling conditions such as initial powder size, milling container rotation speed, milling time, and ball size were varied to produce aluminium flake powder. Flake powder could then be obtained with size range from 15 $\mu$m to 40 $\mu$m with a maximum specific surface area of 5 $m^{2}$/g by controlling milling conditions. Diameter of milled powders with different milling container rotation speed and ball size were compared with that obtained from theoretical model. The best flake powder was obtained in milling condition of initial powder with average size of 19 $\mu$m, mill container rotation speed of 80 rpm, balls of 9.5 mm diameter, and milling time of 40 hours.

  • PDF

Effect of Initial Silicon Scrap Size on Powder Refining Process During High Energy Ball Milling (HEBM) (폐실리콘의 고에너지 밀링 과정에서 초기 입자 크기가 분말의 미세화에 미치는 효과)

  • Song, Joon-Woo;Kim, Hyo-Seob;Kim, Sung-Shin;Koo, Jar-Myung;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.242-250
    • /
    • 2010
  • In this research, the optimal manufacturing conditions of fine Si powders from Si scrap were investigated as a function of different initial powder size using the high-energy ball milling equipment, which produces the fine powder by means of an ultra high-energy within a short duration. The morphological change of the powders according to the milling time was observed by Scanning electron microscopy (SEM). With the increasing milling time, the size of Si powder was decreased. In addition, more energy and stress for milling were required with the decreasing initial powder size. The refinement of Si scrap was rapidly carried out at 10min ball milling time. However, the refined powder started to agglomerate at 30 min milling time, while the powder size became uniform at 60 min milling time.

The Study of Milling Properties for Optimization of Treatment and Recycling of Converter Slag (제강슬래그 처리 및 재활용의 최적화를 위한 분쇄 특성에 관한 연구)

  • Kuh, Sung-Eun;Hwang, Kyoung-Jin;Kim, Dong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1139-1148
    • /
    • 2000
  • To treat and recycle a large quantity of converter slag. the milling properties of -14/ +24 mesh-sized slag has been considered. The optimal conditions in milling process were investigated for producing powder-type slag and the required consumption was derived for the economical grinding. The characteristics of milling processes were studied in the variation of the rotational speed, milling time, filling ratio of ball, and size and amount of feed. The grinding efficiency was also examined. The optimal rotational speed in this experimental condition was observed to be the value of 79% of critical speed. The extent of grinding was increased with increasing the grinding time. but the efficiency of milling was decreased with the time. 50% ball filling was shown to have the optimal grinding effect, and less amount and small-sized feed made the milling efficiency high. As the result, using Bond's equation, power required for efficient milling was considered and the highest value was observed in the condition of high grinding time and optimal rotational speed.

  • PDF

Characteristics of the Powder Type Ag System Insert Metals Made by Ball Milling Method and Brazed Joints (볼 밀링법으로 제조된 브레이징 삽입금속 및 접합 특성)

  • 김광수;이규도;황선효
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.47-54
    • /
    • 2002
  • Powder type Ag system insert metals were manufactured by ball milling process. The variables of milling process such as milling media, revolution speed and powder/ball weight ratio were constant except the milling time. The milling times were selected for 24, 48 and 72 hours. The insert metals made by milling process were evaluated by performing scanning electron microscope, x-ray and DSC(differential scanning calorimetry) analysis, and further in terms of wettability test. The selected insert metals that have the good characteristics compared to commercial insert metals were applied to make the brazed joints of the steel/steel and the steel/WC superhard particles. The characterizations of those brazed joints were also conducted by microstructural observations, shear tensile tests and microhardness measurements. The results indicated that milling time of 48 hours for making powder type insert metals was the best condition showing the small amount of oxides residue, low wetting angle and stable microstructure. The brazed joints that applied the 48 hours milled insert metal were very sound condition indicating the shear tensile value of $2.29{\times}102$ MPa and the microhardness of 138VHN. Further, the amount of the porosity was appeared to be lower than that of the commercial insert metals.

Effect of Milling Time on the Microstructure and Phase Transformation Behaviors of Ni-B Powder During Mechanical Alloying Process (Ni-B 분말의 기계적 합금화 과정에서 밀링시간에 따른 미세조직과 상변화 거동)

  • Kim, Jung-Geun;Lee, Wook-Jin;Park, Sung-Kyun;Park, Ik-Min;Park, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.496-501
    • /
    • 2011
  • In this study, the effect of milling time on the microstructure and phase transformation behaviors of Ni-12 wt.%B powders was investigated using vibratory ball milling process. X-ray diffraction patterns showed that the phase transformation of mixed Ni-B elemental powder occurred after 50 hours of milling, with a formation of nickel boride phases. Through the study of microstructures in mechanical alloying process, it was considered that ball milling strongly accelerates solid-state diffusions of the Ni and B atoms during mechanical alloying process. The results of X-ray photoelectron spectroscopy showed that most of B atoms in the powder were linked to Ni with a formation of nickel boride phases after 200 hours of milling. It was finally concluded that mechanical alloying using ball milling process is feasible to synthesize fine and uniform nickel boride powders.

HIGH-SPEED MILLING FOR DIE AND MOLD MAKING

  • Na, T.kagawa
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.51-60
    • /
    • 2000
  • High-speed milling machine is being sold mainly in the market of die and mold industries, because it reduces machining time greatly as proportion to the spindle speed of machine tool. From the experimental milling tests, it has been cleared that the ball end mill is quite suitable for high speed milling and also tool wear reduces in higher speed milling condition. And a new milling concept with ultra high speed over 100, 000 rpm is proposed for solving the various problems such as NC cutter path generation and NC feed conformity etc.

  • PDF