• Title/Summary/Keyword: ball material

Search Result 593, Processing Time 0.038 seconds

Effect of preparation of organic ferroelectric P(VDF-TrFE) nanostructure on the improvement of tennis performance

  • Qingyu Wang
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.329-334
    • /
    • 2023
  • Organic ferroelectric material found vast application in a verity of engineering and health technology fields. In the present study, we investigated the application of the deformable organic ferroelectric in motion measurement and improving performance in tennis players. Flexible ferroelectric material P(VDF-TrFE) could be used in wearable motion sensors in tennis player transferring velocity and acceleration data to collecting devises for analyzing the best pose and movements in tennis players to achieve best performances in terms of hitting ball and movement across the tennis court. In doing so, ferroelectric-based wearable sensors are used in four different locations on the player body to analyze the movement and also a sensor on the tennis ball to record the velocity and acceleration. In addition, poses of tennis players were analyzed to find out the best pose to achieve best acceleration and movement. The results indicated that organic ferroelectric-based sensors could be used effectively in sensing motion of tennis player which could be utilized in the optimization of posing and ball hitting in the real games.

Design and Analysis of Mixture Experiments for Ball Mix Selection in the Ball Milling (볼밀링에서 볼 배합비 선택을 위한 혼합물 실험계획 및 분석)

  • Kim, Seong-Jun;Choi, Jai Young;Shin, Hyunho
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.579-590
    • /
    • 2014
  • Purpose: Ball milling is a popular process for obtaining fine powders in the part and material industry. One of important issues in the ball milling is to produce particles with a uniform size. Although many factors affect uniformity of particles, this paper focuses on the choice of ball diameter. Consider a ball milling where balls can be taken with three different diameters. The purpose of this paper is to find a ball mix which minimizes the average particle size. Methods: Ball diameters are selected as 10mm, 3mm, and 0.5mm. In order to find an optimum mixing ratio, the method of mixture experiments is employed in this paper. Taguchi's signal-to-noise ratio (SNR) for smaller-the-better type is also used to analyze experimental data. Results: According to the experimental result, SNR is maximized when the ball mix is taken as either 7:3:0 or 6:4:0. Such mixing ratios can be technically validated in terms of porosity reduction. Conclusion: The ball mixing technique presented in this paper provides a useful way to improve the production efficiency with a low cost.

Application of Precious Slag Ball for horizontal drain material by field experimental test (현장시험을 통한 수평배수재로서의 풍쇄 슬래그의 적용성에 관한 연구)

  • Shin, Eun-Chul;Lee, Woon-Hyun;Kim, Soo-Wan;Yoo, Jeong-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.449-456
    • /
    • 2009
  • As soft grounds have complex engineering properties that the load bearing capacity is low and high compressibility, it needs to solve this problems prior to structures are constructed by the method of improvement of soft ground. Generally, the sand mat is used to as a horizontal drain material and loading base for soft ground improvement work. However, as the natural environment can be damaged by sand pickings of large quantity and the volume which is enormous and an amount of demanded sand is increased, it is state of short in supply. This paper presents the result of field experimental test to use Precious Slag Ball to solve these issues instead of sand mat as the replacing material. This study evaluated the performance of Precious Slag Ball as a sand mat in terms of discharge capacity, settlement, and settlement through the K-Embank program.

  • PDF

A study on the surface roughness of STD 11 material according to the helix angle of ball endmill (볼 엔드밀의 헬릭스 각도에 따른 STD 11 소재의 표면 거칠기에 관한 연구)

  • Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 2023
  • The ball end mill is a type of cutting tool that is widely used to process complex mold shapes including aspheric surfaces. Unlike the flat end mill in which the cutting edge is formed on the cylindrical handle, the cutting edge is formed from the cylindrical handle to the hemispherical shape, which is advantageous for processing curved shapes. However, since the cutting speed continuously changes during machining due to the helix angle of the cutting edge or the machining inclination angle, it is difficult to obtain a precise machined surface. Therefore, in this paper, machining was performed while changing the helix angle of the ball end mill and the angle of the machining slope under the same cutting conditions for STD 11 material, which is widely used as a mold material. Through this, the effect of the two variables on the roughness of the machined surface was analyzed. As a result, if the helix angle was 0 degrees, it showed the best surface roughness of Ra. 0.16 ㎛. When the helix angle was 20 degrees, the best surface roughness of Ra. 0.18 ㎛ was occurred.

  • PDF

A Comparative Study for Grinding Media Behavior and DEM Simulation at Actual Grinding Zone on a Traditional Ball Mill (매체형 전동밀의 실제 분쇄장에서 분쇄매체의 거동과 DEM 시뮬레이션의 비교연구)

  • Bor, Amgalan;Jargalsaikhan, Battsetseg;Lee, Jehyun;Choi, Heekyu
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.804-811
    • /
    • 2019
  • This study was performed the real motion and DEM simulation of ball motion using three different types of grinding media with different size and materials in media formation for optimization of process conditions in a traditional ball mill (media ball mill). In the simulation, the rotational speed of the mill, the material of the medium, the velocity of the medium, and the coefficient of friction between the media and the wall of pot were fixed into the actual experimental conditions. The motion of various kinds of grinding media was quantitatively measured by setting the grinding zone defined in the present study on the photographs taken and the snapshot images analyzed in the simulation. In addition, we observed the quantitatively measured value and the changed morphology of the sample and examined the correlation. Therefore, it is suggested to optimize the grinding media which has the greatest influence on the grinding zone under specific experimental conditions.

Improvement of Solder Joint Strength in SAC 305 Solder Ball to ENIG Substrate Using LF Hydrogen Radical Treatment (SAC 305솔더와 ENIG 기판의 접합강도에 미치는 저주파 수소라디칼처리의 영향)

  • Lee, Ah-Reum;Jo, Seung-Jae;Park, Jai-Hyun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.99-106
    • /
    • 2011
  • Joint strength between a solder ball and a pad on a substrate is one of the major factors which have effects on electronic device reliability. The effort to improve solder joint strength via surface cleaning, heat treatment and solder composition change have been in progress. This paper will discuss the method of solder ball joint strength improvement using LF hydrogen radical cleaning treatment and focus on the effects of surface treatment condition on the solder ball shear strength and interfacial reactions. In the joint without radical cleaning, voids were observed at the interface. However, the specimens cleaned by hydrogen-radical didn't have voids at the interface regardless of cleaning time. The shear strength between the solder ball and the pad was increased over 120%(about 800gf) when compared to that without the radical treatment (680gf) under the same reflow condition. Especially, at the specimen treated for 5minutes, ball shear strength was considerably increased over 150%(1150gf). Through the observation of fracture surface and cross-section microstructure, the increase of joint strength resulted from the change of fracture mode, that is, from the solder ball fracture to IMC/Ni(P) interfacial fracture. The other cases like radical treated specimen for 1, 3, 7, 9min. showed IMC/solder interfacial fracture rather than fracture in the solder ball.

Electrochemical Properties of Ball-milled Tin-Graphite Composite Anode Materials for Lithium-Ion Battery (볼 밀링으로 제조된 리튬이온전지용 주석-흑연 복합체 음극재의 전기화학적 특성)

  • Lee, Tae-Hui;Hong, Hyeon-A;Cho, Kwon-Koo;Kim, Yoo-Young
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.462-469
    • /
    • 2021
  • Tin/graphite composites are prepared as anode materials for Li-ion batteries using a dry ball-milling process. The main experimental variables in this work are the ball milling time (0-8 h) and composition ratio (tin:graphite=5:95, 15:85, and 30:70 w/w) of graphite and tin powder. For comparison, a tin/graphite composite is prepared using wet ball milling. The morphology and structure of the different tin/graphite composites are investigated using X-ray diffraction, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and scanning and transmission electron microscopy. The electrochemical properties of the samples are also examined. The optimal dry ball milling time for the uniform mixing of graphite and tin is 6 h in a graphite-30wt.%Sn sample. The electrode prepared from the composite that is dry-ball-milled for 6 h exhibits the best cycle performance (discharge capacity after 50th cycle: 308 mAh/g and capacity retention: 46%). The discharge capacity after the 50th cycle is approximately 112 mAh/g, higher than that when the electrode is composed of only graphite (196 mAh/g after 50th cycle). This result indicates that it is possible to manufacture a tin/graphite composite anode material that can effectively buffer the volume change that occurs during cycling, even using a simple dry ball-milling process.

Effect of ball-milling condition on electrochemical properties of $LiFePO_4-C$ cathode materials

  • Jin, Bo;Jin, En-Mei;Park, Kyung-Hee;Park, Bok-Kee;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.338-338
    • /
    • 2007
  • $LiFePO_4-C$ cathode materials were prepared by hydrothermal reaction and ball-milling. In order to enhance the electronic conductivity of $LiFePO_4$, 10% of acetylene black was added. During the ball-milling, different revolutions per minute (100, 200 and 300 rpm) was carried out. The structural and morphological performance of $LiFePO_4-C$ powders were characterized by X-ray diffraction and scanning electron microscope. The X-ray diffraction results demonstrated that $LiFePO_4-C$ powders had an orthorhombic olivine-type structure with a space group of Pnma. $LiFePO_4-C$ batteries were characterized electrochemically by charge/discharge experiments. The charge/discharge experiments indicated that $LiFePO_4-C$/Li batteries by 300 rpm of the ball-milling exhibited the best electrochemical performance with the discharge capacity of 126mAh/g at a discharge rate of $0.1mA/cm^2$.

  • PDF

A Study on the Ball-Bar Artifact for the Volumetric Error Calibration of Machine Tools (Machine Tools 공간오차 분석을 위한 Bal1-bar Artifact 연구)

  • Lee, Eung-Suk;Koo, Sang-Seo;Park, Dal-Gun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.986-991
    • /
    • 2004
  • For volumetric error measurement and calibration for machine tools, manufacturing machine or coordinate measuring machine (CMM), are studied using a Ball-bar artifact. A design of the Ball-bar is suggested manufactured by Invar, which is a low thermal expansion material, and precision steel balls. The uncertainty for the artifact method is discussed. A method of the Ball-bar artifact for obtaining 3-D position errors in CMM is proposed. The method of error vector measurement is shown using the Ball-bar artifact. Finally, the volumetric error is calculated from the error vectors and it can be used for Pitch error compensation in conventional NC machine and 3-D position Error map for calibration of NC machine tools.

Design of Shoulder Height for Ball Bearing using Contact Analysis (접촉해석을 이용한 볼 베어링의 Shoulder Height 설계)

  • Kim, Tae-Wan;Yoon, Ki-Chan;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.24 no.5
    • /
    • pp.228-233
    • /
    • 2008
  • In this study, the methodology for determination of shoulder height in the internal shape design of ball bearing using 3D contact analysis is proposed. The static analysis of a ball bearing was performed to calculate the distribution of applied contact load and angles among the rolling elements. From each rolling element loads and the contact geometry between ball and inner/outer raceway, 3D contact analyses using influence function are conducted. These methodology is applied to HDD ball bearing. A critical axial load and a critical shoulder height which are not affected by edge are calculated. The proposed methodology may be applied to other rolling element bearing for the purpose of reducing the material cost and improving the efficiency of the bearing design process.