• Title/Summary/Keyword: ball material

Search Result 595, Processing Time 0.029 seconds

Mechanical alloy and Thermoelectric Properties of $\beta-FeSi_2$ by Planetary Ball Milling (기계적 합금법에 의한 $\beta-FeSi_2$분말 합성 및 열전특성)

  • Park Keunil;Cho Sung Il
    • Korean Journal of Crystallography
    • /
    • v.15 no.2
    • /
    • pp.104-109
    • /
    • 2004
  • The mechanical synthesis of thermoelectric material $FeSi_2$ by planetary ball mill has been investigated. The homogeneous and amorphous mixture of Fe-Si has been obtained by mechanical alloying for 850 rpm-40 min. The $\beta-FeSi_2$ powder could be synthesized by 1123 K-3 hr annealing heat treatment after mechanical alloying for 850 rpm-10, 20, and 40 min. The ceramic samples doped with the maximum content up to $10\;at.\;\%$ Co have exhibited semiconduction phenomena and maximum thermoelectric powder at 440K.

Fabrication of Fe coated Mg Based Desulfurization Powder by Mechanical Alloying Process (기계적 합금화 공정에 의한 Fe가 코팅된 Mg 탈황 분말 제조 연구)

  • Song, Joon-Woo;Guillermo, Otaduy;Chun, Byong-Sun;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.226-231
    • /
    • 2012
  • In this research, the coating behavior of Mg and Fe desulfurization powder fabricated by low energy and conventional planetary mill equipment was investigated as a function of milling time, which produces uniform Fe coated powders due to milling energy. Since high energy ball milling results in breaking the Fe coated Mg powders into coarse particles, low energy ball milling was considered appropriate for this study, and can be implemented in desulfurization industry widely. XRD and FE-SEM analyses were carried out to investigate the microstructure and distribution of the coating material. The thickness of the Fe coating layer reaches a maximum of 14 ${\mu}m$ at 20 milling hours. The BCC structures of Fe particles are deformed due to the slip system of Fe coated Mg particles.

Machinability Evaluation of the Plastic Mould Steel using AlTiN Coated Tool (AlTiN코팅공구를 사용한 플라스틱금형강의 기계가공성 평가)

  • Lee, Seung-Chul;Cho, Gyu-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.629-635
    • /
    • 2009
  • In this research, KP-4, one of the plastic mold steels, was coated with the AlTiN from one layer to four layers by the PVD method in the $\Phi$ 8mm cemented carbide ball end mill. Coated KP-4 was processed with various conditions. For example, slope of $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ the spindle rotation speed was changed from 10,000rpm to 16,000rpm, the tool feeding speed was changed from 1,300mm/min to 1,700mm/min, the depth of cut was also changed from 0.3mm to 0.9mm, and etc. Cutting component force according to the coating layer number, and surface roughness were studied. The cutting component force showed a good agreement better the up ward direction than the down ward direction under all experimental conditions. In case of the condition per the material shape, it was lessen when the tool have larger angle because the average effective diameter of the tool is larger. The surface roughness showed good condition in case of the up ward than the down ward direction. And, in the 3rd layer of AlTiN coating, it showed the most suitable condition.

  • PDF

Synthesis and Characteristics of W-Ni-Fe Nanocomposite Powder by Hydrogen Reduction of Oxides (산화물 수소환원에 의한 W-Ni-Fe 나노복합분말의 합성과 특성)

  • 이창우;윤의식;이재성
    • Journal of Powder Materials
    • /
    • v.8 no.1
    • /
    • pp.49-54
    • /
    • 2001
  • The synthesis and characteristics of W-Ni-Fe nanocomposite powder by hydrogen reduction of ball milled W-Ni-Fe oxide mixture were investigated. The ball milled oxide mixture was prepared by high energy attrition milling of W blue powder, NiO and $Fe_2O_3$ for 1 h. The structure of the oxide mixture was characteristic of nano porous agglomerate composite powder consisting of nanoscale particles and pores which act as effective removal path of water vapor during hydrogen reduction process. The reduction experiment showed that the reduction reaction starts from NiO, followed by $Fe_2O_3$ and finally W oxide. It was also found that during the reduction process rapid alloying of Ni-Fe yielded the formation of $\gamma$-Ni-Fe. After reduction at 80$0^{\circ}C$ for 1 h, the nano-composite powder of W-4.57Ni-2.34Fe comprising W and $\gamma$-Ni-Fe phases was produced, of which grain size was35nm for W and 87 nm for $\gamma$-Ni-Fe, respectively. Sinterability of the W heavy alloy nanopowder showing full density and sound microstructure under the condition of 147$0^{\circ}C$/20 min is thought to be suitable for raw material for powder injection molding of tungsten heavy alloy.

  • PDF

Removal of Phosphorus in Wastewater by Ca-Impregnated Activated Alumina

  • Kang, Seong Chul;Lee, Byoung Ho
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.197-203
    • /
    • 2012
  • Phosphorus removal during discharge of wastewater is required to achieve in a very high level because eutrophication occurs even at a very low phosphorus concentration. However, there are limitations in the traditional technologies in the removal of phosphorus at very low concentration, such as at a level lower than 0.1 mg/L. Through a series of experiments, a possible technology which can remove phosphate to a very low level in the final effluent of wastewater was suggested. At first Al, Zn, Ca, Fe, and Mg were exposed to phosphate solution by impregnating them on the surface of activated alumina to select the material which has the highest affinity to phosphate. Kinetic tests and isotherm tests on phosphate solution have been performed on four media, which are Ca-impregnated activated alumina, activated alumina, Ca-impregnated loess ball, and loess ball. Results showed that Ca-impregnated activated alumina has the highest capacity to adsorb phosphate in water. Scanning electron microscope image analysis showed that activated alumina has high void volume, which provides a large surface area for phosphate to be adsorbed. Through a continuous column test of the Ca-impregnated activated alumina it was discovered that about 4,000 bed volumes of wastewater with about 0.2 mg/L of phosphate can be treated down to lower than 0.14 mg/L of concentration.

The Effect of Test Variables on the Accuracy of Equo-Tip Hardness (Equo-Tip 경도값에 미치는 실험변수의 영향)

  • Nahm, S.H.;Jeon, S.B.;Kim, J.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.2
    • /
    • pp.32-36
    • /
    • 1990
  • For the accurate measurements of hardness in a material, it is necessary to have a thorough understanding of the effects of test variables on the accuracy of hardness value. For the rebound hardness test, major test variables are the radius of hammer ball tip, type of backing materials, size and roughness of the specimen. In this study, effects of these variables on Equo-Tip hardness value were investigated. Hardness measurements were carried out using WC balls with various sizes of worn-ot zone. The sample materials chosen for the experiments were commercial standard hardness blocks and SM45C steel bars subjected to either normalization or quench and temper treatments. As backing materials, aluminum, steel and rubber plates were used in all the experiments. Experimental results show that for the accurate measurements of Equo-tip hardness, it is necessary to use the hammer ball with a worn-out zone parameter of less than 0.23, and the recommended minimum thickness and width of the specimen are 25mm and 70mm, respectively. Further for the surface preparation, the specimens need to be polished with an emery paper of No. 400 or finer, and for the backing matrials, it is recommended to use steels or rubbers.

  • PDF

Prepration and Properties of Blue Tungsten Oxide Nanopowders by High Energy Ball-Mill (고 에너지 볼밀을 이용한 Blue 텅스텐산화물 나노입자의 제조와 특성)

  • Kim, Myung-Jae;Lee, Kwang-Seok;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.23-28
    • /
    • 2021
  • The purpose of this study is to prepare WO3 nanopowders by high-energy milling in mixture gas (7 % H2+Ar) with various milling times (10, 30, and 60 min). The phase transformation, particle size and light absorption properties of WO3 nanopowders during reduction via high-energy milling are studied. It is found that the particle size of the WO3 decreases from about 30 ㎛ to 20 nm, and the grain size of WO3 decreases rapidly with increasing milling time. Furthermore, the surface of the particles due to the pulverization process is observed to change to an amorphous structure. UV/Vis spectrophotometry shows that WO3 powder with increasing milling times (10, 30, 60 min) effectively extends the light absorption properties to the visible region. WO3 powder changes from yellow to gray and can be seen as a phenomenon in which the progress of the color changes to blue. The characterization of WO3 is performed by high resolution X-ray diffractometry, Field emission scanning electron microscopy, Transmission electron microscopy, UV/Vis spectrophotometry and Particle size analysis.

Antioxidant, Antimicrobial, and Curing Potentials of Micronized Celery Powders added to Pork Sausages

  • Ramachandraiah, Karna;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.41 no.1
    • /
    • pp.110-121
    • /
    • 2021
  • Meat industries utilize plant material such as celery in cured meat products. Extraction of valuable bioactive compounds, nitrates and nitrites often involves processes that increase cost or lack sustainability. Thus, this study investigated the effect of ball-milled celery powders (CP) on the physicochemical, antioxidant, and antimicrobial properties along with curing efficiency in comminuted meat product. Pork sausages loaded with CPs with different average particle sizes: 265 ㎛ (T1), 68 ㎛ (T2) and 7 ㎛ (T3) were compared to those added without and with sodium nitrite (150 ppm). The a⁎ values were increased for sausages with larger particle size. The L⁎ values decreased for all CPs. Residual nitrite for all particle sizes increased in the earlier stages and decreased at the end of storage period. The curing efficiency also increased for larger size particles with an increase until day 9 followed by a gradual decrease. Superfine CP had a tendency to improve the antioxidant activities. The antimicrobial activity of CPs was not comparable with nitrite added sausages. The textural parameters remained unaffected by particle size. Thus, instead of extracts or juices, micronized CPs could be used to improve the antioxidant activities and curing efficiency of label friendly reformulated meat products.

Review of Testing Configurations for Simultaneous Measurement of Friction and Triboelectrification

  • P. R. Deshmukh;Dae-Hyun Cho
    • Tribology and Lubricants
    • /
    • v.40 no.4
    • /
    • pp.118-132
    • /
    • 2024
  • The triboelectric nanogenerator (TENG) has emerged as a groundbreaking technology for harvesting clean and sustainable energy cost effectively. For reliable TENG design, minimizing wear damage at the friction layers is crucial. This review provides a comprehensive overview of tribometer-integrated TENG testing configurations used in the simultaneous investigation of both tribological and electrical performance. It considers configurations such as plate-on-plate, ball-on-disc, and ball-on-flat tribometers designed for linear reciprocating or rotating sliding friction tests. These tribometers are either specifically designed or adapted for TENG testing. Triboelectric material holders facilitate friction tests by establishing electrical connections from the triboelectric materials or electrodes, thereby enabling accurate measurement of electrical signals. Electrometers and oscilloscopes record electrical outputs such as short-circuit current and open-circuit voltage. This integration enables the simultaneous measurement of both friction and electrical outputs, providing a thorough understanding of TENG performance. The review also summarizes how factors such as normal force, sliding frequency, and rotating speed affect friction coefficients and TENG performance. It also examines the relationship between the coefficient of friction and tribocharges under various loads and frequencies. The review emphasizes the importance of these testing configurations for evaluating both friction and electrical performance, which are crucial for optimizing TENG efficiency. Finally, the review explores future prospects for developing innovative tribometer designs suited for both tribology and TENG testing.

Evaluation of Engineering Properties of Retaining Wall Material Using Fiber Reinforcement (섬유보강재를 이용한 흙막이 벽체 재료의 공학적 특성평가)

  • Lee, Jong-Ho;Lee, Kang-Il;Yu, Nam-Jae;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.243-252
    • /
    • 2019
  • Recently, as the utilization of underground space increases, the demand for underground excavation increases. In this study, the concrete mixture with a new material was used to develop and evaluate the stability of the CS-H wall that can greatly minimize the problems of existing wall and minimize the impact of ground depression and surrounding ground that may occur in the future for excavation of over 30 m deep in urban areas. The fiber reinforcement formulation of steel fibers, synthetic fibers, and glass fibers, along with fine aggregate parts of PS-ball and ferronickel, were mixed. The Mixture ratios were determined by conducting slump test compresive strength test, modulus of elastic test, flexural strength test, splitting tensile strength test and conductivity test. As a result of the test, the steel fiber mixture showed very good results compared to other reference values in all items, and it is considered to be the most suitable for the CS-H wall to be developed.