• Title/Summary/Keyword: ball material

Search Result 593, Processing Time 0.027 seconds

Failure Analysis of a Ball in the Nuclear Fuel Exchanger

  • Kim, H.P.;Kim, D.J.;Hwang, S.S.;Joung, M.K.;Lim, Y.S.;Kim, J.S.
    • Corrosion Science and Technology
    • /
    • v.4 no.5
    • /
    • pp.211-216
    • /
    • 2005
  • Failure analysis of the latch ram ball and the C-ram ball with the trade name AFBMA Gr. 50 Colmonoy No. 6, has been performed to identify the root cause of the failure. The study required the extraction of the both failed and normal balls from the nuclear fuel exchanger. Microstructures of both balls were examined after polishing and etching. Breaking tests of both the ball revealed similarity in cleavage surfaces. Fracture surfaces of both failed ball and normal ball after breaking test were examined with SEM and EDX. Microstructure of the ball revealed an austenite phase with coarse Cr rich precipitate. Indented marks observed on the surface of the failed ball are believed to be produced by overloading. In the light of the afore mentioned observations and studies, the failure mechanism of the ball in nuclear fuel exchanger seem to be caused by impact or mechanical overloading on ball.

Effects of the Mixing of an Active Material and a Conductive Additive on the Electric Double Layer Capacitor Performance in Organic Electrolyte

  • Yang, Inchan;Kwon, Soon Hyung;Kim, Bum-Soo;Kim, Sang-Gil;Lee, Byung-Jun;Kim, Myung-Soo;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.132-137
    • /
    • 2015
  • The effects of the mixing of an active material and a conductive additive on the electrochemical performance of an electric double layer capacitor (EDLC) electrode were investigated. Coin-type EDLC cells with an organic electrolyte were fabricated using the electrode samples with different ball-milling times for the mixing of an active material and a conductive additive. The ball-milling time had a strong influence on the electrochemical performance of the EDLC electrode. The homogeneous mixing of the active material and the conductive additive by ball-milling was very important to obtain an efficient EDLC electrode. However, an EDLC electrode with an excessive ball-milling time displayed low electrical conductivity due to the characteristic change of a conductive additive, leading to poor electrochemical performance. The mixing of an active material and a conductive additive played a crucial role in determining the electrochemical performance of EDLC electrode. The optimal ball-milling time contributed to a homogeneous mixing of an active material and a conductive additive, leading to good electrochemical performance of the EDLC electrode.

Piezoelectric and Dielectric Properties of PMN-PNN-PZT Ceramic according to the High Energy Ball Milling (고에너지 밀링에 따른 PMN-PNN-PZT 세라믹의 유전 및 압전 특성)

  • Lee, Yu-Hyong;Yoo, Ju-Hyun;Paik, Dong-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.203-204
    • /
    • 2008
  • In this study, in order to develop the multilayer piezoelectric actuator and ultrasonic resonator, PMN-PNN-PZT ceramics were fabricated by the variations of ball size at sintering temperature of $900^{\circ}C$ and their piezoelectric and dielectric characteristics were investigated as a function of the variations of ball size. When the ball size was 3mm$\phi$, density, dielectric constant$({\varepsilon}r)$, electromechanical coupling factor(kp) and piezoelectric d constant$(d_{33})$ were increased. At the ball size of 3mm$\phi$, the specimen showed the optimum values of density=7.909g/$cm^3$, kp=0.592, Qm=1292, $d_{33}$=368pC/N, $\varepsioln_r$=1502, respectively.

  • PDF

Aging Evaluation of Duplex Cast Stainless Steel Using Ball Indentation Test (볼 압입시험을 이용한 2상 주조 스테인리스강의 열화 평가)

  • Kim Jin-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1253-1261
    • /
    • 2005
  • Cast stainless steel (CSS) is thermally aged by a long term exposure in the range of nuclear power plant operating temperature. The thermal aging is a cause of concern for the continued safe and reliable operation of CSS nuclear components. Therefore, an assessment of degradation in material properties of these components has been importantly considered. In this study the ball indentation tests were performed on four cast stainless steels aged at $400^{\circ}C$ for 3600 hours, to investigate the applicability of ball indentation test to the assessment of aging degradation of cast stainless steels. Thus, the reliability of ball indentation test for aged CSS was analyzed by evaluating the scattering of data tested from each material and by comparing tensile properties obtained from ball indentation test and standard tensile test. Also, the tensile properties of aged CSS obtained from ball indentation test were compared with those predicted by the evaluation procedure developed on the basis of material database for aged CSS.

Correlation between the linear impulse and ball spin rate (선 충격 량과 공의 회전 속도와의 상관관계)

  • Roh, Woo-Jin;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.870-874
    • /
    • 2007
  • Golf ball spin rate after impact with club is created by the contact force, which is greatly influenced by ball and club mass, material, impact speed, and club loft angle. Previous studies showed that the contact force is determined as the resultant force of the reaction forces normal and tangential to the club face at the contact point. The normal force causes the compression and restitution of the ball, and the tangential force creates the spin. Especially, the tangential force takes either positive or negative values as the ball rolls and slides along the club face during impact. Although the positive and negative tangential forces are known to create and reduce the back spin rate, respectively, the mechanism of ball spin creation has not yet been discussed in detail. It is shown in this work that the linear impulse of the tangential force is directly related to generation of back spin rate of golf ball. The linear impulse can be calculated from the tangential force, which depends upon many factors such as ball and club mass, material, impact speed, and club loft angle. In this research, the influence of the contact force between golf club and ball is investigated to analyze the mechanism of impact. For this purpose, the contact force and the contact time at impact between golf club head and ball are computed using FEM.

  • PDF

Correlation between the Linear Impulse and Ball Spin Rate (선 충격량과 공의 회전 속도와의 상관관계)

  • Roh, Woo-Jin;Lee, Chong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1127-1132
    • /
    • 2007
  • Golf ball spin rate after impact with club is created by the contact force, which is greatly influenced by ball and club mass, material, impact speed, and club loft angle. Previous studies showed that the contact force is determined as the resultant force of the reaction forces normal and tangential to the club face at the contact point. The normal force causes the compression and restitution of the ball, and the tangential force creates the spin. Especially, the tangential force takes either positive or negative values as the ball rolls and slides along the club face during impact. Although the positive and negative tangential forces are known to create and reduce the back spin rate, respectively, the mechanism of ball spin creation has not yet been discussed in detail. It is shown in this work that the linear impulse of the tangential force is directly related to generation of back spin rate of golf ball. The linear impulse can be calculated from the tangential force, which depends upon many factors such as ball and club mass, material, impact speed, and club loft angle. In this research, the influence of the contact force between golf club and ball is investigated to analyze the mechanism of impact. For this purpose, the contact force and the contact time at impact between golf club head and ball are computed using FEM.

The Effect of Milling Time and Speed on the Particle Size of Ibuprofen in the Cryogenic Ball Milling Process (극저온 볼 밀링 공정시 밀링시간 및 속도가 Ibuprofen분말의 입자 크기에 미치는 영향)

  • Cho Hyun Kab;Paik Young Nam;Rhee Kyong Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.1022-1027
    • /
    • 2005
  • In this study, ball milling process was applied to reduce the particle size of bio-material down to submicron size. The material used was Ibuprofen. The ball milling was performed at low temperature of about $-180^{\circ}C$. The effect of processing conditions (milling time, milling speed) on the particle size was determined. The results showed that the degree of crystallite of Ibuprofen was slightly reduced by the ball milling process. The results also showed that the size of Ibuprofen was significantly reduced by the ball milling process. The effect of milling time was significant within the milling time of six hours while it was small thereafter.

Reliability Evaluations for Shear Strength of Resistance Welded Ball Stud according to Different Cooling Methods

  • Park, In-Duck;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.44-50
    • /
    • 2018
  • As a type of bolt with a spherical head, the ball stud is widely used as a part of a ball joint in steering or suspension systems in automobiles. Balls and studs are subjected to heat treatment suitable for each material; in particular, the shear strength of the ball stud must meet the specifications of the production company. This study evaluated the shear strength of joints according to the cooling method of ball studs subject to resistance welding. The shear stress of water cooling was higher than that of air cooling (as-received material). Note, however, th at oil cooling showed lower stress than that of as-received. When judged by standard deviation, mean, and coefficient of variation according to the arithmetic statistics and shape parameter as well as scale parameter, oil cooling is suitable.

Design Characteristics for Water Lubricated Ball Bearing Retainer (수윤활 볼베어링의 리테이너 설계 특성)

  • Lee Jae-Seon;Choi Suhn;Kim Ji-Ho;Park Keun-Bae;Zee Sung-Quun
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.278-282
    • /
    • 2005
  • Deep groove ball bearing is installed in a control element of an integral nuclear reactor, where water is used as coolant and lubricant. This bearing is made of STS440C stainless steel for the raceways and the balls to use in radioactive environment and water. It is known that the retainer design affects ball bearing operability and endurance life, however there is no verified retainer design and material for water lubricated ball bearing. Four kinds of retainers are manufactured for the endurance test of water lubricated deep groove ball bearing. Three of them are commercially developed types and the other is designed for this research. It is verified that ball bearings with steel pressed and general plastic retainer can not survive to required life in the water, however bearings with machined type and cylinder type retainer can survive. This proves that one of the major design parameters for water lubricated ball bearing is retainer type and material. In this paper, experimental research of endurance test for water-lubricated ball bearing are reported.

Particle Morphology Behavior and Milling Efficiency by DEM Simulation during Milling Process for Composites Fabrication by Traditional Ball Mill on Various Experimental Conditions - Effect of Rotation Speed, Ball Size, and Ball Material (전동볼밀의 복합재 제조공정에서 각종 실험조건에 따른 입자형상 변화 및 DEM 시뮬레이션을 통한 밀링 효율의 고찰 - 회전속도, 매체크기, 매체재질의 영향)

  • Bor, Amgalan;Batchuulun, Ichinkhorloo;Jargalsaikhan, Battsetseg;Lee, Jehyun;Choi, Heekyu
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.191-203
    • /
    • 2018
  • This study was investigated the effect of the morphology change of copper (Cu) powders under the different rotational speed and milling time by using three kinds of grinding media with different size and materials, and performed DEM simulations of ball behavior. In order to clarify the mechanism of grinding by three - dimensional simulations of the ball behavior in a traditional ball mill, the force, kinetic energy, and medium velocity of the grinding media were calculated. In the simulation, the amount of change of the input energy was also calculated by adjusting the rotational speed, ball material, kinetic velocity, and friction coefficient in the same as the actual experimental conditions. The scanning electron microscope results show that the particle morphology changes from irregular to spherical when the ball size is small.