• Title/Summary/Keyword: balancing mobile robot

Search Result 43, Processing Time 0.023 seconds

Neuro-fuzzy Control for Balancing a Two-wheel Mobile Robot (이륜구동 이동로봇의 균형을 위한 뉴로 퍼지 제어)

  • Park, Young Jun;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • This paper presents the neuro-fuzzy control method for balancing a two-wheel mobile robot. A two-wheel mobile robot is built for the experimental studies. On-line learning algorithm based on the back-propagation(BP) method is derived for the Takagi-Sugeno(T-S) neuro-fuzzy controller. The modified error is proposed to learn the B-P algorithm for the balancing control of a two-wheel mobile robot. The T-S controller is implemented on a DSP chip. Experimental studies of the balancing control performance are conducted. Balancing control performances with disturbance are also conducted and results are evaluated.

Development of Experimental Mobile Robots for Robotics Engineering Education by Using LEGO MINDSTORM (이동로봇을 중심으로 LEGO MINDSTORM을 응용한 로봇공학 교육용 실습 로봇개발)

  • Park, June-Hyung;Jung, Seul
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.57-64
    • /
    • 2012
  • This paper introduces several mobile robots developed by using LEGO MIDSTORM for experimental studies of robotics engineering education. The first mobile robot is the line tracer robot that tracks a line, which is a prototype of wheel-driven mobile robots. Ultra violet sensors are used to detect and follow the line. The second robot system is a two-wheel balancing robot that is somewhat nonlinear and complex. For the robot to balance, a gyro sensor is used to detect a balancing angle and PD control is used. The last robot system is a combined system of a line tracer and a two-wheel balancing robot. Sensor filtering and control algorithms are tested through experimental studies.

Development of Two Wheeled Car-like Mobile Robot Using Balancing Mechanism : BalBOT VII (밸런싱 메커니즘을 이용한 이륜형 자동차 형태의 이동로봇개발 : BalBOT VII)

  • Lee, Hyung-Jik;Jung, Seul
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.289-297
    • /
    • 2009
  • This paper presents the development and control of a two wheeled car-like mobile robot using balancing mechanism whose heading control is done by turning the handle. The mobile inverted pendulum is a combined system of a mobile robot and an inverted pendulum system. A sensor fusion technique of low cost sensors such as a gyro sensor and a tilt sensor to measure the balancing angle of the inverted pendulum robot system accurately is implemented. Experimental studies of the trajectory following control task has been conducted by command of steering wheel while balancing.

  • PDF

Experimental Studies of Balancing Control of a Two-wheel Mobile Robot for Human Interaction by Angle Modification (이륜 구동 로봇의 균형 각도 조절을 통한 사람과의 상호 제어의 실험적 연구)

  • Lee, Seung Jun;Jung, Seul
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2013
  • This paper presents interaction force control between a balancing robot and a human operator. The balancing robot has two wheels to generate movements on the plane. Since the balancing robot is based on position control, the robot tries to maintain a desired angle to be zero when an external force is applied. This leads to the instability of the system. Thus a hybrid force control method is employed to react the external force from the operator to guide the balancing robot to the desired position by a human operator. Therefore, when an operator applies a force to the robot, desired balancing angles should be modified to maintain stable balance. To maintain stable balance under an external force, suitable desired balancing angles are determined along with force magnitudes applied by the operator through experimental studies. Experimental studies confirm the functionality of the proposed method.

Balancing Control of a Two Wheeled Mobile Robot System (두 바퀴로 구동하는 이동로봇 시스템의 균형 제어)

  • Lee, Hyung-Jik;Jung, Seul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.1-7
    • /
    • 2011
  • This paper presents implementation and control of a two wheeled mobile robot system which consists of two systems, an inverted pendulum system and a mobile robot system. Control purpose is to regulate its balancing and navigation. The balancing robot has advantages of one point turning and robust balancing against disturbances from the ground. Simulation studies of local and global control methods are performed. Since the robot is implemented to have a symmetrical structure, simple linear control algorithms are used for balancing and navigation. Low cost sensors such as gyro and tilt sensor are fused together to detect the inclined angle. Experimental studies of following desired circular trajectory are conducted.

Implementation and Balancing Control of A Single-wheel Mobile Robot Using Air Power (바람의 힘을 이용한 외바퀴 이동 로봇의 구현 및 균형제어)

  • Sim, Yong-Gi;Jung, Seul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.139-144
    • /
    • 2014
  • This paper presents the novel design, implementation and control of a single-wheel mobile robot that can balance by using air power from ducted fans. All of the motions of the single-wheel mobile robot are actuated by air power instead of motor torques. Using air power allows to reduce the total weight of the robot. The complementary sensor fusion algorithm is introduced to estimate the angle correctly. After several design and development, the robot is tested for balancing in the roll direction and yawing motion. In addition, the balancing control of the robot on a single rope is tested to evaluate the control performance.

Experimental Studies of Balancing an Inverted Pendulum and Position Control of a Wheeled Drive Mobile Robot Using a Neural Network (신경회로망을 이용한 이동로봇 위의 역진자의 각도 및 로봇 위치제어에 대한 연구)

  • Kim, Sung-Su;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.888-894
    • /
    • 2005
  • In this paper, experimental studies of balancing a pendulum mounted on a wheeled drive mobile robot and its position control are presented. Main PID controllers are compensated by a neural network. Neural network learning algorithm is embedded on a DSP board and neural network controls the angle of the pendulum and the position of the mobile robot along with PID controllers. Uncertainties in system dynamics are compensated by a neural network in on-line fashion. Experimental results show that the performance of balancing of the pendulum and position tracking of the mobile robot is good.

Implementation and Control of an Extendable and Separable Mobile Robot Manipulator For Indoor Service (높이 조절 및 하체 분리형 실내용 서비스 이동 로봇의 제작 및 제어)

  • Ahn, Jae-Kook;Jung, Seul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • This paper presents the implementation and control of a mobile manipulator robot for indoor service. The robot has two arms for tasks and a mobile base for mobility. The robot is designed to have several characteristics. Firstly, the robot has the capability of changing the height of the robot. Secondly, the robot can be changed into a balancing mode of two contact points from mobile mode of four contact points. The robot has a balancing mode like an inverted pendulum robot as well as mobile robot mode. Lastly, as a novel concept, the robot is designed to have the capability of separating into two systems, the robot ann and the mobile robot as well. The mobile base can be separately used for a cleaning service.

Implementation and Balancing Control of One-Wheel Robot, GYROBO (외바퀴 구동 GYROBO의 제작 및 밸런싱 제어 구현)

  • Kim, Pil-Kyo;Park, Junehyung;Ha, Min Soo;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.501-507
    • /
    • 2013
  • This paper presents the development and balancing control of GYROBO, a one wheeled mobile robot system. GYROBO is a disc type one wheel mobile robot that has three actuators, a drive motor, a spin motor, and a tilt motor. The dynamics and kinematics of GYROBO are analyzed, and simulation studies conducted. A one-wheeled robot, GYROBO is built and its balancing control is performed. Experimental studies of GYROBO's balancing abilities are conducted to demonstrate the gyroscopic effects generated by the spin and tilt angles of a flywheel.

SDRE Based Nonlinear Optimal Control of a Two-Wheeled Balancing Robot (SDRE 기법을 이용한 이륜 밸런싱 로봇의 비선형 최적제어)

  • Kim, Sang-Tae;Kwon, Sang-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1037-1043
    • /
    • 2011
  • Two-wheeled balancing mobile robots are currently controlled in terms of linear control methods without considering the nonlinear dynamical characteristics. However, in the high maneuvering situations such as fast turn and abrupt start and stop, such neglected terms become dominant and greatly influence the overall driving performance. This paper addresses the SDRE nonlinear optimal control method to take advantage of the exact nonlinear dynamics of the balancing robot. Simulation results indicate that the SDRE control outperforms LQR in the respect of transient performance and required wheel torques. A design example is suggested for the state matrix that provides design flexibility in the SDRE control. It is shown that a well-planned state matrix by reflecting the physics of a balancing robot greatly contributes to the driving performance and stability.