• Title/Summary/Keyword: balancing

Search Result 2,793, Processing Time 0.028 seconds

Balancing the Cubli Frame with LQR-controlled Reaction Wheel (반작용 휠의 LQR 제어를 통한 Cubli 프레임의 균형유지)

  • Kim, Yonghun;Park, Junmo;Han, Seungoh
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.165-169
    • /
    • 2018
  • A single-axis Cubli frame realized simply with an IMU sensor and DC motor is presented herein. To maintain the balance on the Cubli frame, an LQR controller based on a Lagrangian derivation of the dynamics was designed, which utilized the state variables of the frame angle and its angular acceleration, as well as the wheel angle and its angular acceleration. The designed LQR controller showed a settling time balancing capability of approximately two seconds and 40% of the maximum overshoot in Matlab/Simulink simulations. Our experimental results of the fabricated Cubli frame matched with the simulation results. It maintained balancing at the reference position even though an initial offset as well as external disturbance during the balancing was applied.

Genetic Algorithm for Balancing and Sequencing in Mixed-model U-lines (혼합모델 U라인에서 작업할당과 투입순서 결정을 위한 유전알고리즘)

  • 김동묵
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.2
    • /
    • pp.115-125
    • /
    • 2004
  • This paper presents a new method that can efficiently solve the integrated problem of line balancing and model sequencing in mixed-model U-lines (MMULs). Balancing and sequencing problems are important for an efficient use of MMULs and are tightly related with each other. However, in almost all the existing researches on mixed-model production lines, the two problems have been considered separately. A genetic algorithm for balancing and sequencing in mixed-model U line is proposed. A presentation method and genetic operators are proposed. Extensive experiments are carried out to analyze the performance of the proposed algorithm. The computational results show that the proposed algorithm is promising in solution quality.

A genetic algorithm for flexible assembly line balancing (유연조립라인 밸런싱을 위한 유전알고리듬)

  • Kim, Yeo-Geun;Kim, Hyeong-Su;Song, Won-Seop
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.425-428
    • /
    • 2004
  • Flexible assembly line (FAL) is a production system that assembles various parts in unidirectional flow line with many constraints and manufacturing flexibilities. In this research we deal with a FAL balancing problem with the objective of minimizing the maximum workload allocated to the stations. However, almost all the existing researches do not appropriately consider various constraints due to the problem complexity. Therefore, this thesis addresses a balancing problem of FAL with many constraints and manufacturing flexibilities, unlike the previous researches. To solve this problem we use a genetic algorithm (GA). To apply GA to FAL, we suggest a genetic representation suitable for FAL balancing and devise evaluation method for individual's fitness and genetic operators specific to the problem, including efficient repair method for preserving solution feasibility. The experimental results are reported.

  • PDF

Modular Multilevel Converter Based STATCOM Topology Suitable for Medium-Voltage Unbalanced Systems

  • Pirouz, Hassan Mohammadi;Bina, Mohammad Tavakoli
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.572-578
    • /
    • 2010
  • This paper discusses a transformerless shunt static compensator (STATCOM) based on a modular multilevel converter (MMC). It introduces a new time-discrete appropriate current control algorithm and a phase-shifted carrier modulation strategy for fast compensation of the reactive power and harmonics, and also for the balancing of the three-phase source side currents. Analytical formulas are derived to demonstrate the accurate mechanism of the stored energy balancing inside the MMC. Various simulated waveforms verify that the MMC based STATCOM is capable of reactive power compensation, harmonic cancellation, and simultaneous load balancing, while controlling and balancing all of the DC mean voltages even during the transient states.

An Assignment Rule for Balancing Two-sided Assembly Lines (양면 조립라인 밸런싱을 위한 할당규칙)

  • Lee, Tae-Ok;Kim, Yeo-Keun
    • IE interfaces
    • /
    • v.10 no.2
    • /
    • pp.29-40
    • /
    • 1997
  • This paper considers two-sided (left and right side) assembly lines which are often used, especially in assembling large-sized products such as trucks and buses. A large number of exact algorithms and heuristics have been proposed to balance one-sided lines. However, little attention has been paid to balancing two-sided assembly lines. This paper presents an efficient assignment rule for balancing two-sided assembly lines. The rule involves maximizing relatedness and slackness between works. We first investigate the characteristics of two-sided line balancing and devise new measures for the balancing. We in this rule assign workstations a set of tasks rather than an unit task at a time. a priority rule of assigning the sets is proposed. Extensive computational experiments are carried out to make the performance comparison between the proposed rule and existing ones. The computational results show that our rule is promising in solution quality.

  • PDF

Investigation on Excessive Vibration Signals of Two-Pole Generator Rotors in Balancing (발전기 양극 회전자 밸런싱에서의 이상 진동신호 분석)

  • 박종포;최성필;주영호
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.835-840
    • /
    • 1999
  • Cause of excessive vibration signals with twice the rotational speed of a 2-pole generator rotor in balancing for fossil power plants was investigated. The 2-pole generator rotor is treated as a typically asymmetric rotor in vibration analysis, and produces asynchronous vibration with twice the rotational speed for its own inertia and stiffness asymmetry. This paper introduces practical balancing procedure and experimental vibration data of the asymmetric 2-pole rotor in balancing, and presents the results of investigation into sources of the excessive vibration signals.

  • PDF

Analysis of a Symmetric Active Cell Balancer with a Multi-winding Transformer

  • Jeon, Seonwoo;Kim, Myungchin;Bae, Sungwoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1812-1820
    • /
    • 2017
  • This paper analyzes a symmetric active cell balancer for a battery management system. The considered cell balancer uses a forward converter in which the circuit structure is symmetric. This cell-balancing method uses fewer switches and is simpler than the previously proposed active cell-balancing circuits. Active power switches of this cell-balancing circuit operate simultaneously with the same pulse width modulation signals. Therefore, this cell-balancing circuit requires less time to be balanced than a previous bidirectional-forward-converter-based cell balancer. This paper analyzes the operational principles and modes of this cell balancer with computer-based circuit simulation results as well as experimental results in which each unbalanced cell is equalized with this cell balancer. The maximum power transfer efficiency of the investigated cell balancer was 87.5% from the experimental results. In addition to the experimental and analytical results, this paper presents the performance of this symmetric active cell-balancing method.

Balancing and Sequencing in Mixed Model Assembly Lines Using an Endosymbiotic Evolutionary Algorithm (내공생 진화알고리듬을 이용한 혼합모델 조립라인의 작업할당과 투입순서 결정)

  • 김여근;손성호
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.4
    • /
    • pp.109-124
    • /
    • 2001
  • This paper presents a new method that can efficiently solve the integrated problem of line balancing and model sequencing in mixed model assembly lines (MMALs). Line balancing and model sequencing are important for an efficient use of MMALs. The two problems of balancing and sequencing MMALs are tightly related with each other. However, In almost all the existing researches on mixed-model production lines, the two problems have been considered separately. In this research, an endosymbiotic evolutionary a1gorithm, which is a kind of coevolutionary a1gorithm, is adopted as a methodology in order to solve the two problems simultaneously. This paper shows how to apply an endosymbiotic evolutionary a1gorithm to solving the integrated problem. Some evolutionary schemes are used In the a1gorithm to promote population diversity and search efficiency. The proposed a1gorithm is compared with the existing evolutionary algorithms in terms of solution quality and convergence speed. The experimental results confirm the effectiveness of our approach.

  • PDF

Adaptive balancing of highly flexible rotors by using artificial neural networks

  • Saldarriaga, M. Villafane;Mahfoud, J.;Steffen, V. Jr.;Der Hagopian, J.
    • Smart Structures and Systems
    • /
    • v.5 no.5
    • /
    • pp.507-515
    • /
    • 2009
  • The present work is an alternative methodology in order to balance a nonlinear highly flexible rotor by using neural networks. This procedure was developed aiming at improving the performance of classical balancing methods, which are developed in the context of linearity between acting forces and resulting displacements and are not well adapted to these situations. In this paper a fully experimental procedure using neural networks is implemented for dealing with the adaptive balancing of nonlinear rotors. The nonlinearity results from the large displacements measured due to the high flexibility of the foundation. A neural network based meta-model was developed to represent the system. The initialization of the learning procedure of the network is performed by using the influence coefficient method and the adaptive balancing strategy is prone to converge rapidly to a satisfactory solution. The methodology is tested successfully experimentally.

Development of Two Wheeled Car-like Mobile Robot Using Balancing Mechanism : BalBOT VII (밸런싱 메커니즘을 이용한 이륜형 자동차 형태의 이동로봇개발 : BalBOT VII)

  • Lee, Hyung-Jik;Jung, Seul
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.289-297
    • /
    • 2009
  • This paper presents the development and control of a two wheeled car-like mobile robot using balancing mechanism whose heading control is done by turning the handle. The mobile inverted pendulum is a combined system of a mobile robot and an inverted pendulum system. A sensor fusion technique of low cost sensors such as a gyro sensor and a tilt sensor to measure the balancing angle of the inverted pendulum robot system accurately is implemented. Experimental studies of the trajectory following control task has been conducted by command of steering wheel while balancing.

  • PDF