• 제목/요약/키워드: bake hardenability

검색결과 10건 처리시간 0.02초

일괄 풀림처리된 강판의 예비 변형정도에 따른 소열경화 특성 (Bake hardenability of batch annealed steel sheets with prestrain)

  • 허훈;황필상
    • 오토저널
    • /
    • 제12권1호
    • /
    • pp.40-48
    • /
    • 1990
  • Bake hardenability of batch annealed steel sheets is investigated in connection with the amount of tensile deformation and the bake hardening condition. This study associates with the method for producing bake hardening materials by means of batch annealing process and for measuring bake hardenability which is not yet fully established. The experimental result demonstrates the relationship between strain distribution and bake hardening behavior in various bake hardening conditions, which provides an essential information for automobile design and related sheet metal forming in a press shop. The result also shows the bake hardenability of the tested material increases as the baking temperature is increased from 150.deg. C. The result assures the bake hardening materials can guarantee reasonably high strength as well as good uniformity in yield strength for the automobile body by sheet metal forming process.

  • PDF

자동차용 소부경화형(BH) 강의 고주기 피로 특성에 미치는 미세 황화물의 영향 (Effect of Fine Copper Sulfides on the High Cycle Fatigue Properties of Bake Hardening Steels for Automotive)

  • 강성규;김진용;최일동;이승복;홍문희
    • 대한금속재료학회지
    • /
    • 제49권3호
    • /
    • pp.203-210
    • /
    • 2011
  • Bake hardening steels have to resist strain aging to prevent the yield strength increment and stretcher strain during press process and to enhance the bake hardenability during baking process after painting. The bake hardening steels need to control the solute carbon and the solute nitrogen to improve the bake hardenability. Ti and/or Nb alloying for nitride and carbide precipitation and low carbon content below 0.003% are used to solve strain aging and formability problem for automotive materials. However, in the present study, the effect of micro-precipitation of copper sulfide on the bake hardenability and fatigue properties of extremely low carbon steel has been investigated. The bake hardenability of Cu-alloyed bake hardening (Cu-BH) steel was slightly higher (5 MPa) than that of Nb-alloyed bake hardening (Nb-BH) steel, but the fatigue limit of Cu-BH steel was far higher (45 MPa) than that of Nb-BH steel. All samples showed the ductile fracture behavior and some samples revealed distinct fatigue stages, such as crack initiation, stable crack growth and unstable crack growth.

합금화 용융아연 도금강판의 강성분, 소둔 및 합금화 열처리가 소부경화성에 미치는 영향 (Effects of Steel Chemistry, Annealing and Galvannealing Conditions on Bake Hardenability of Hot-Dip Galvannealed Sheet Steels)

  • 이호종;김종상
    • 한국표면공학회지
    • /
    • 제34권3호
    • /
    • pp.247-257
    • /
    • 2001
  • In an effort to improve the dent resistance of exterior body panels at a reduced steel thickness, the bake hardenable steels added Ti or Nb with tensile strength of 35Kgf/$\textrm{mm}^2$ were investigated. The bake hardenability increased with the annealing temperature and solute carbon content. Bake hardening of 3 to 5Kgf/$\textrm{mm}^2$ was obtained in steels with a controlled solute carbon concentration range from 6 to 10ppm. The galvannealing temperature and time had little influence on the bake hardenability. The Fe-Zn alloying reaction of 35Kgf/$\textrm{mm}^2$ BH steel was remarkably retarded due to a 0.07%P addition. The optimum galvannealing temperatures of 35Kgf/$\textrm{mm}^2$ BH steel were ranged from 520 to 56$0^{\circ}C$ in view of the Fe content and powdering resistance. The cross-section and planar views of the galvannealed coatings to characterize morphology development were discussed.

  • PDF

자동차 외판용 BH강판에서 성형성과 소부경화성에 미치는 조질압연의 영향 (Effect of Temper Rolling on Formability and Baking Hardenability in Baking Hardenable Steels for Auto Body Outer Panel)

  • 고흥석;문만빈;신철수;오현운
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.37-44
    • /
    • 2004
  • Automotive company has been endeavoring to develop high strength steels to get higher fuel efficiency of car since the oil shortage in 1970s and to cope with the recent strict environmental regulation. Outer panels(Hood, Roof, Door and Fender) for automobile require higher dent resistance. Bake-hardenable(BH) steels are known as useful for their high deep drawability and high dent resistance. Recently BH steels are increasingly adapted for outer panel use due to their high drawability and high dent resistance. In this study effect of temper rolling on formability (textures, r value) and bake hardenability is investigated fur improving characteristic of bake-hardenable steels.

  • PDF

Ti-Nb 복합 첨가강의 BH특성에 미치는 균열온도의 영향 (Effect of Soaking Temperature on the Bake Hardnability of Ti-Nb Stabilized Steel Sheets)

  • 허보영;엄용수;김상열;조상헌;남태운
    • 한국주조공학회지
    • /
    • 제24권4호
    • /
    • pp.231-237
    • /
    • 2004
  • Bake hardenable steel utilizes the phenomenon of strain aging to provide an increase in the yield strength of formed components. An increase of the carbon content will improve the bake hardening response: more solutes are available to pin mobile dislocations and to form the clusters more rapidly. But aging resistance decrease as increasing solute carbon. In order to under-stand the compatibility between bake hardenability and aging resistance. The optimum solute carbon control methods during manufacture should be determined. In this paper, the effect of continuous heat cycle conditions such as soaking temperature, rapid cooling start temperature, cooling rate on BH(Bake Hardenability), AI(Aging Index), YP-El(Yield Point Elongation) and other mechanical properties have been investigated. and following results were obtained. In the case of soaking temperature, BH increases with higher soaking temperature because of NbC $dissolution(830^{\circ}C)$, Therefore the solute carbon and BH at $850^{\circ}C$ and $870^{\circ}C$ are higher than these at $810^{\circ}C$. But BH at $870^{\circ}C$ is a little lower than that at $850^{\circ}C$ owing to the ferrite grain size. The measurement of amount of dissolution C using IFT(Internal Friction Test) can explain the relation of solute carbon and BH.

열처리한 A5082와 A6060합금의 인장특성에 미치는 변형율속도 및 예비변형율의 영향 (Effect of Strain Rate and Pre-strain on Tensile Properties of Heat-treated A5082 and A6060 Aluminium Wrought Alloys)

  • 이충도
    • 열처리공학회지
    • /
    • 제33권4호
    • /
    • pp.161-172
    • /
    • 2020
  • The tensile property of A5082 and A6060 aluminium wrought alloys was investigated, in terms of the strain rate sensitivity on alloy conditions by heat treatment and bake hardenability on pre-strain prior to strain ageing. The tensile test was carried out in a range of strain rate of 4.17 × 10-5 s-1 ~ 4.17 × 10-5 s-1 in room temperature and the nominal range of pre-strain was 3.0 ~ 10.5%. The tensile deformation of A5082 alloys is characterized as typical case of dynamic strain ageing with negative strain rate sensitivity for all conditions, and the tensile strength indicates a similar level regardless of alloy conditions, except only in full annealed condition. The stress-relief annealing on A6060 alloys can induce practical decrease in strength level of over approximately 100 MPa without any ductility loss, compared to as-rolled condition, while a full annealed and aged condition leads remarkable strengthening effect with the decrease of tensile elongation. Additionally, the bake hardenability of A5082 alloy by strain ageing indicates a negative dependence upon the increase of pre-strain, while A6060 alloy exhibits a positive sign even in low level relatively compared with conventional SPCC.

초극저탄소 Cu강화형 자동차용 강판 변형시효에 미치는 Aluminum 및 고용질소의 영향 (Effect of Aluminum and Solute N on the Strain Aging of Extremely Low-Carbon Automotive Steel Strengthened with Cu sulfide)

  • 홍문희;양혜미;송승우;한성호
    • 대한금속재료학회지
    • /
    • 제47권2호
    • /
    • pp.71-78
    • /
    • 2009
  • The precipitation behavior of solute carbon and nitrogen strongly affects the mechanical properties of low-carbon automotive panel. In the present study, the effects of aluminum and solute nitrogen on the bake hardenability and strain aging of extremely low-carbon steel with carbon content below 15 ppm has been investigated. The ferrite grain size and distribution of precipitates were varied with the amount of aluminum content of 0.003 to ~ 0.100 wt% in a constant solute carbon and nitrogen. With increasing the aluminum content, the ferrite grain size is increased and strain aging is delayed. The strain aging is also delayed by increasing the annealing temperature, although the ferrite grain size is not much changed.

Microstructural engineering of dual phase steel to aid in bake hardening

  • Banerjee, M.K.
    • Advances in materials Research
    • /
    • 제4권1호
    • /
    • pp.1-12
    • /
    • 2015
  • Low carbon steel of composition 0.05C - 0.18 Mn - 0.012 Si is intercritically annealed at temperatures $750^{\circ}C$, $775^{\circ}C$ and $800^{\circ}C$. The equilibrated alloys of different amounts of austenite with varying carbon contents are quenched in iced water. The same alloys are subcritically annealed at $675^{\circ}C$ and $700^{\circ}C$ for varying periods of times; the subcritically annealed alloy samples are quenched in iced water. Optical, scanning electron and transmission electron microscopy are carried out for all the samples. The dislocation structure, its distribution and density present in the above prepared duplex ferrite martensite steels are studied. The martensites are found to be highly dislocated due to lattice invariant deformation. At the same time ferrite adjoining the martensite areas also exhibits quite a high dislocation density. The high dislocation density is favorable for strain ageing and hence bakes hardenability. EDS analyses were carried out for both martensite and ferrite phases; it is found that the degree of supersaturation in ferrite together with carbon content in martensite varies with the process parameters. The microhardness test results show that the hardness values of different phases differ appreciably with process parameters. The microstructures and the corresponding microanalyses reveal that differently processed steels contain phases of varying compositions and different distribution.

자동차용 고강도 냉연강판의 개발 및 적용현황 (Developments and applications of high strength cold rolled steel sheets for automobiles)

  • 김성주;진광근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.45-52
    • /
    • 2004
  • Continuing pressure for the weight reduction of vehicles and improvement of collision safety is driving the development of new high strength steel with excellent formability. The formable high strength steels which have excellent drawability have been developed and applied to the complicated inner panels. Although BH steel have mainly occupied the material market for outer panels, it is challenged by DP steel which have low yield strength and good bake hardenability. The advanced high strength steel, TRIP steels and DP steels which have excellent formability are new alternatives to conventional HSLA steel for structural parts such as members and pillars. HSLA steels also have been used for automotive bumper reinforcements due to their high yield ratio. Higher grade complex phase steel(CP) were developed for bumper reinforcements by addition of precipitation hardening to transformation strengthened steel. The usage of the advanced high strength steel ale increasing and will become the main material in structural parts near future. This paper describes the features of newly developed high strength cold rolled steels for automobiles.

  • PDF

이상조직강판의 성형특성에 미치는 Mo와 Cr첨가의 영향 (The Effect of Mo and Cr addition on the Deep Drawability of Dual Phase Steel Sheets)

  • 한성호;안연상;진광근;김인배
    • 대한금속재료학회지
    • /
    • 제46권11호
    • /
    • pp.713-724
    • /
    • 2008
  • The need to lower the weights of automotive vehicle and to improve the safety of cars has resulted in the development of high strength steels such as TRIP(Transformation Induced Plasticity) and DP (Dual Phase) steel. It is well known that the higher strength of steel shows the poorer press formability. Among the high strength steels, DP steel shows several good characteristics such as low yield ratio, high initial n value, high elongation, high bake hardenability and anti-aging property. However, there's a certain limit in application of DP steels to the automotive panel parts because their poor deep drawbility caused by martensite. In this study, the effect of alloying elements on the deep drawability and recrystallization texture in TS 440MPa grade DP steel with 0.015~0.02% carbon has been investigated on the base of SEM, TEM, XRD and EBSD analysis.