• Title/Summary/Keyword: bainite steels

Search Result 85, Processing Time 0.023 seconds

Effect of Ni Addition on Bainite Transformation and Properties in a 2000 MPa Grade Ultrahigh Strength Bainitic Steel

  • Tian, Junyu;Xu, Guang;Jiang, Zhengyi;Hu, Haijiang;Zhou, Mingxing
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1202-1212
    • /
    • 2018
  • The effects of Nickle (Ni) addition on bainitic transformation and property of ultrahigh strength bainitic steels are investigated by three austempering processes. The results indicate that Ni addition hinders the isothermal bainite transformation kinetics, and decreases the volume fraction of bainite due to the decrease of chemical driving force for nucleation and growth of bainite transformation. Moreover, the product of tensile strength and total elongation (PSE) of high carbon bainitic steels decreases with Ni addition at higher austempering temperatures (220 and $250^{\circ}C$), while it shows no significant difference at lower austempering temperature ($200^{\circ}C$). For the same steel (Ni-free or Ni-added steel), the amounts of bainite and RA firstly increase and then decrease with the increase of the austempering temperature, resulting in the highest PSE in the sample austempered at temperature of $220^{\circ}C$. In addition, the effects of austempering time on bainite amount and property of high carbon bainitic steels are also analyzed. It indicates that in a given transformation time range of 30 h, more volume of bainite and better mechanical property in high carbon bainitic steels can be obtained by increasing the isothermal transformation time.

The Mechanical Properties and Characteristics of TRIP-assisted Multiphase Steels in High Toughness for Autombile Safety (자동차의 안정성을 고려한 고인성 충격흡수 강재로서 TRIP 형 복합상강의 기계적 성질 및 그 특성)

  • 이기열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.141-148
    • /
    • 2000
  • As the steel plates used for automobile safety the TRIP-assisted multiphase steels are being introduced to automobile industry with respect to their remarkable mechanical properties for the combination of high strength and large elongation. This multiphase structure is generated by two stage heat treatment (intercritical annealing & isothermal treatment) The metastable retained austenite can be transformed to martensite when plastically deformed which results in TRIP effect. Actually the microstructure of TRIP-assisted steels consist of a fine dispersite. There present discussion deals with bainite reaction kinetics of austenite in the process o f two stage heat treatment. In relation to bainite transformation the characteristics of bainite reaction is found to be influenced by the bainite tempering temperature and also by the relative rate in which carbides precipitate within residual austenite.

  • PDF

Effect of Alloying Elements on Hardness Self-Control of Non-Heat-Treatable Steels (비조질강의 경도 자기제어에 미치는 합금원소의 영향)

  • Cho, Ki Sub;Kwon, Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.2
    • /
    • pp.67-73
    • /
    • 2017
  • Transformation behavior and hardness change were studied in five kinds of self-control steels; standard, high V, modified Ni, W, and high C-Ni steels. In the cooling rates of $10-100^{\circ}C/min$, the primary ferrite and bainite were formed, and the amount of the former increased with decreasing cooling rate. The bainite transformation temperature, Bs, was measured as 570, 560, 590, 575, and $565^{\circ}C$ in experimental steels, respectively, which was similar to the calculated temperature. The self-control, that is, the consistency in hardness, was observed, in which the hardness increased with the decrease in Bs. In the case of hot compression testing, the lower temperature deformation led to the enhancement in hardness.

Effect of Austempering on Microstructure and Mechanical Properties of High-Carbon Nano-Bainite Steels (고탄소 나노 베이나이트강의 미세조직과 기계적 특성에 미치는 오스템퍼링의 영향)

  • Lee, J.M.;Ko, S.W.;Ham, J.H.;Song, Y.B.;Kim, H.K.;Hwang, B.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.219-225
    • /
    • 2019
  • This study deals with the effect of austempering temperature and time on the microstructures and mechanical properties of high-carbon nano-bainite steels. Although all the austempered specimens are mainly composed of bainite, martensite, and retained austenite, the specimens which are austempered at lower temperatures contain finer packets of bainite. As the duration for austempering increases, bainite packets are clearly seen due to larger amount of carbon atoms being redistributes into bainite and retained austenite during bainite transformation. As the austempering time increases, the hardness of the specimens gradually decreases as a result of lower martensite volume fraction, and later increases again due to the formation of nano-bainite structure. The Charpy impact test results indicate that the impact toughness of the austempered specimens can be improved if the formation of nano-bainite structure and the transformation induced plasticity effect of retained austenite are optimized at higher austempering temperature.

Development of Thermal Distortion Analysis Method Based on Inherent Strain for TMCP Steels (TMCP 강판의 고유변형도 기반 열변형 해석법 개발)

  • Ha, Yun-Sok;Yang, Jin-Hyuk;Won, Seok-Hee;Yi, Myung-Su
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.61-66
    • /
    • 2008
  • As ships become to be larger than ever, the thicker plate and the higher tensile steel plate are used in naval shipyard. Though special chemical composition is needed for high-tensile steels, recent high-tensile steels are made by the TMCP(Thermo-Mechanical control process) skill. The increase of yield stress and tensile stress of TMCP steels is induced from bainite phase which is transformed from austenite, but that increased yield stress can be vanished by another additional thermal cycle like welding and heating. As thermal deformations are deeply related by yield stress of material, the study for prediction of plate deformation by heating should reflect principle of TMCP steels. This study developed an algorithm which can calculate inherent strain. In this algorithm, not only the mechanical principles of thermal deformations, but also the predicting of the portion of initial bainite is considered when calculating inherent strain. The simulations of plate deformation by these values showed good agreements with experimental results of normalizing steels and TMCP steels in welding and heating. Finally we made an inherent strain database of steels used in Class rule.

Characteristics of Heat Generation during Transormation in Carbon Steels (일반탄소강의 상변태 중 발열 특성 해석)

  • 한흥남
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.196-201
    • /
    • 2000
  • A thermodynamic model was developed to analyze the characteristics of the heat generation during transformation of austenite in 0.186wt% and 0.458 wt%. carbon steels. The heat capacity and the heat evolved during transformation were formulated as functions of temperature and chemical composition for ferrite bainite and pearlite. in addition using the transformation dilatometer the transformation heat evolved during cooling was measured and the transformation behavior was observed. It was found that the heat capacity of ferrite was similar to those of pearlite and bainite. The heat capacity of ferrite was greater than that of bainite which was greater than that of pearlite. The molar heat of transformation to pearlite was greater than that to bainite which was greater than that to ferrite. The heats were found to be increased with decreased temperature and increasing the carbon content, It was also observed that the thermodynamic model. The heat of transformation in the higher carbon steel was greater than that in the lower carbon one. This was attributed to the lower transformation temperature and the greater amount of transformed pearlite in the higher carbon steel.

  • PDF

2-D & 3-D Observations on the Microstructure of Super Bainite TRIP Steels using Total Analysis System (TAS(Total Analysis System)을 이용한 SB-TRIP강에서의 2-D & 3-D 미세구조 분석 연구)

  • Seol, J.B.;Lee, B.H.;Park, C.G.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.44-49
    • /
    • 2010
  • It has been widely reported that carbide-free bainitic steels or super-bainite TRIP (SB-TRIP) steels for the automotive industry are a new family of steels offering a unique combination of high strength and ductility. Hence, it is important to exactly evaluate the volume fraction of RA and to identify the 3-D morphology of constituent phases, because it plays a crucial role in mechanical properties. Recently, as electron back-scattered diffraction (EBSD) equipped with focused ion beam (FIB) has been developed, 3-D EBSD technique for materials science are used to these steels. Moreover, newly developed atom probe tomography (APT) technique can provide the exact distribution and chemical concentration of alloying elements in a sub-nm scale. The APT analysis results indicate exactly the distribution and composition of alloying elements in the austenite and bainite phases of SB-TRIP steels with the atomic-scale resolution. And thus, no partitioning of aluminum and manganese atoms was showed between the austenite containing $7.73{\pm}0.39$ at% C and the bainitic ferrite associated with $0.22{\pm}0.06$ at% C in SB-TRIP steel.

Thermal distortion analysis method for TMCP steel structures using shell element

  • Ha, Yun-sok;Rajesh, S.R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.95-100
    • /
    • 2009
  • As ships become larger, thicker and higher tensile steel plate are used in shipyard. Though special chemical compositions are required for high-tensile steels, recently they are made by the TMCP (Thermo-Mechanical control process) methodology. The increased Yield / Tensile strength of TMCP steels compared to the normalized steel of same composition are induced by suppressing the formation of Ferrite and Pearlite in favor of strong and tough Bainite while being transformed from Austenite. But this Bainite phase could be vanished by another additional thermal cycle like welding and heating. As thermal deformations are deeply related by yield stress of material, the study for prediction of plate deformation by heating should niflect the principle of TMCP steels. The present study is related to the development of an algorithm which could calculate inherent strain. In this algorithm, not only the mechanical principles of thermal deformations, but also the initial portion of Bainite is considered when calculating inherent strain. Distortion analysis results by these values showed good agreements with experimental results for normalized steels and TMCP steels during welding and heating. This algorithm has also been used to create an inherent strain database of steels in Class rule.

Effect of Carbon Equivalent and Cooling Rate on Microstructure in A516 Steels for Pressure Vessel (압력용기용 A516 강의 미세조직에 미치는 탄소 당량과 냉각 속도의 영향)

  • Lee, Hyun Wook;Kang, Ui Gu;Kim, Min Soo;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.511-518
    • /
    • 2019
  • In this study, the effect of carbon equivalent and cooling rate on microstructure and hardness of A516 steels for pressure vessel is investigated. Six kinds of specimens are fabricated by varying carbon equivalent and cooling rate, and their microstructures and hardness levels are analyzed. Specimens with low carbon equivalent consist of ferrite and pearlite. As the cooling rate increases, the size of pearlite decreases slightly. The specimens with high carbon equivalent and rapid cooling rates of 10 and $20^{\circ}C/s$ consist of not only ferrite and pearlite but also bainite structure, such as granular bainite, acicular ferrite, and bainite ferrite. As the cooling rate increases, the volume fractions of bainite structure increase and the effective grain size decreases. The effective grain sizes of granular bainite, acicular ferrite, and bainitic ferrite are ~20, ~5, and ${\sim}10{{\mu}m$, respectively. In the specimens with bainite structure, the volume fractions of acicular ferrite and bainitic ferrite, with small effective grains, increase as cooling rate increases, and so the hardness increases significantly.

Effects of Ni addition on continuous cooling transformation behavior of low carbon HSLA steels (저탄소${\cdot}$저합금 강의 연속 냉각 변태에 미치는 Ni의 영향)

  • Kang J. S.;Jun J. H.;Park C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.456-459
    • /
    • 2005
  • Continuous cooling transformation behaviors were studied fur low carbon HSLA steels containing three different level $(1\~3\;wt\%)$ of Ni addition. Thermo-mechanical processing (TMP) simulations to construct continuous cooling (CCT) diagram were conducted by using Gleeble system. As cooling rate increased, pearlite, granular bainite, acicular ferrite, bainitic ferrite and lath martensite were transformed from deformed austenite. Fully bainitic microstructure were developed at all cooling rate condition in high Ni containing steel due to hardenability increasing effects of Ni. Ni also influenced the transformation kinetics. At the slowest cooling rate of $0.3^{\circ}C/s$, transformation delayed with decreasing Ni contents because of the diffusion of substitutional alloy elements. However, cooling rate slightly increased to $1^{\circ}C/s$, transformation kinetics accelerated with decreasing Ni contents because nucleation of bainite was sluggish due to hardening of residual austenite.

  • PDF