• Title/Summary/Keyword: bagging algorithm

Search Result 28, Processing Time 0.017 seconds

Double-Bagging Ensemble Using WAVE

  • Kim, Ahhyoun;Kim, Minji;Kim, Hyunjoong
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.5
    • /
    • pp.411-422
    • /
    • 2014
  • A classification ensemble method aggregates different classifiers obtained from training data to classify new data points. Voting algorithms are typical tools to summarize the outputs of each classifier in an ensemble. WAVE, proposed by Kim et al. (2011), is a new weight-adjusted voting algorithm for ensembles of classifiers with an optimal weight vector. In this study, when constructing an ensemble, we applied the WAVE algorithm on the double-bagging method (Hothorn and Lausen, 2003) to observe if any significant improvement can be achieved on performance. The results showed that double-bagging using WAVE algorithm performs better than other ensemble methods that employ plurality voting. In addition, double-bagging with WAVE algorithm is comparable with the random forest ensemble method when the ensemble size is large.

Extreme Learning Machine Ensemble Using Bagging for Facial Expression Recognition

  • Ghimire, Deepak;Lee, Joonwhoan
    • Journal of Information Processing Systems
    • /
    • v.10 no.3
    • /
    • pp.443-458
    • /
    • 2014
  • An extreme learning machine (ELM) is a recently proposed learning algorithm for a single-layer feed forward neural network. In this paper we studied the ensemble of ELM by using a bagging algorithm for facial expression recognition (FER). Facial expression analysis is widely used in the behavior interpretation of emotions, for cognitive science, and social interactions. This paper presents a method for FER based on the histogram of orientation gradient (HOG) features using an ELM ensemble. First, the HOG features were extracted from the face image by dividing it into a number of small cells. A bagging algorithm was then used to construct many different bags of training data and each of them was trained by using separate ELMs. To recognize the expression of the input face image, HOG features were fed to each trained ELM and the results were combined by using a majority voting scheme. The ELM ensemble using bagging improves the generalized capability of the network significantly. The two available datasets (JAFFE and CK+) of facial expressions were used to evaluate the performance of the proposed classification system. Even the performance of individual ELM was smaller and the ELM ensemble using a bagging algorithm improved the recognition performance significantly.

Genetic Algorithm based Hybrid Ensemble Model (유전자 알고리즘 기반 통합 앙상블 모형)

  • Min, Sung-Hwan
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.1
    • /
    • pp.45-59
    • /
    • 2016
  • An ensemble classifier is a method that combines output of multiple classifiers. It has been widely accepted that ensemble classifiers can improve the prediction accuracy. Recently, ensemble techniques have been successfully applied to the bankruptcy prediction. Bagging and random subspace are the most popular ensemble techniques. Bagging and random subspace have proved to be very effective in improving the generalization ability respectively. However, there are few studies which have focused on the integration of bagging and random subspace. In this study, we proposed a new hybrid ensemble model to integrate bagging and random subspace method using genetic algorithm for improving the performance of the model. The proposed model is applied to the bankruptcy prediction for Korean companies and compared with other models in this study. The experimental results showed that the proposed model performs better than the other models such as the single classifier, the original ensemble model and the simple hybrid model.

Comparing Classification Accuracy of Ensemble and Clustering Algorithms Based on Taguchi Design (다구찌 디자인을 이용한 앙상블 및 군집분석 분류 성능 비교)

  • Shin, Hyung-Won;Sohn, So-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.1
    • /
    • pp.47-53
    • /
    • 2001
  • In this paper, we compare the classification performances of both ensemble and clustering algorithms (Data Bagging, Variable Selection Bagging, Parameter Combining, Clustering) to logistic regression in consideration of various characteristics of input data. Four factors used to simulate the logistic model are (1) correlation among input variables (2) variance of observation (3) training data size and (4) input-output function. In view of the unknown relationship between input and output function, we use a Taguchi design to improve the practicality of our study results by letting it as a noise factor. Experimental study results indicate the following: When the level of the variance is medium, Bagging & Parameter Combining performs worse than Logistic Regression, Variable Selection Bagging and Clustering. However, classification performances of Logistic Regression, Variable Selection Bagging, Bagging and Clustering are not significantly different when the variance of input data is either small or large. When there is strong correlation in input variables, Variable Selection Bagging outperforms both Logistic Regression and Parameter combining. In general, Parameter Combining algorithm appears to be the worst at our disappointment.

  • PDF

An Empirical Comparison of Bagging, Boosting and Support Vector Machine Classifiers in Data Mining (데이터 마이닝에서 배깅, 부스팅, SVM 분류 알고리즘 비교 분석)

  • Lee Yung-Seop;Oh Hyun-Joung;Kim Mee-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.343-354
    • /
    • 2005
  • The goal of this paper is to compare classification performances and to find a better classifier based on the characteristics of data. The compared methods are CART with two ensemble algorithms, bagging or boosting and SVM. In the empirical study of twenty-eight data sets, we found that SVM has smaller error rate than the other methods in most of data sets. When comparing bagging, boosting and SVM based on the characteristics of data, SVM algorithm is suitable to the data with small numbers of observation and no missing values. On the other hand, boosting algorithm is suitable to the data with number of observation and bagging algorithm is suitable to the data with missing values.

Anomaly-Based Network Intrusion Detection: An Approach Using Ensemble-Based Machine Learning Algorithm

  • Kashif Gul Chachar;Syed Nadeem Ahsan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.107-118
    • /
    • 2024
  • With the seamless growth of the technology, network usage requirements are expanding day by day. The majority of electronic devices are capable of communication, which strongly requires a secure and reliable network. Network-based intrusion detection systems (NIDS) is a new method for preventing and alerting computers and networks from attacks. Machine Learning is an emerging field that provides a variety of ways to implement effective network intrusion detection systems (NIDS). Bagging and Boosting are two ensemble ML techniques, renowned for better performance in the learning and classification process. In this paper, the study provides a detailed literature review of the past work done and proposed a novel ensemble approach to develop a NIDS system based on the voting method using bagging and boosting ensemble techniques. The test results demonstrate that the ensemble of bagging and boosting through voting exhibits the highest classification accuracy of 99.98% and a minimum false positive rate (FPR) on both datasets. Although the model building time is average which can be a tradeoff by processor speed.

Time Series Forecasting Based on Modified Ensemble Algorithm (시계열 예측의 변형된 ENSEMBLE ALGORITHM)

  • Kim Yon Hyong;Kim Jae Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.137-146
    • /
    • 2005
  • Neural network is one of the most notable technique. It usually provides more powerful forecasting models than the traditional time series techniques. Employing the Ensemble technique in forecasting model, one should provide a initial distribution. Usually the uniform distribution is assumed so that the initialization is noninformative. However, it would be expected a sequential informative initialization based on data rather than the uniform initialization gives further reduction in forecasting error. In this note, a modified Ensemble algorithm using sequential initial probability is developed. The sequential distribution is designed to have much weight on the recent data.

Improving an Ensemble Model by Optimizing Bootstrap Sampling (부트스트랩 샘플링 최적화를 통한 앙상블 모형의 성능 개선)

  • Min, Sung-Hwan
    • Journal of Internet Computing and Services
    • /
    • v.17 no.2
    • /
    • pp.49-57
    • /
    • 2016
  • Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble learning techniques are known to be very useful for improving prediction accuracy. Bagging is one of the most popular ensemble learning techniques. Bagging has been known to be successful in increasing the accuracy of prediction of the individual classifiers. Bagging draws bootstrap samples from the training sample, applies the classifier to each bootstrap sample, and then combines the predictions of these classifiers to get the final classification result. Bootstrap samples are simple random samples selected from the original training data, so not all bootstrap samples are equally informative, due to the randomness. In this study, we proposed a new method for improving the performance of the standard bagging ensemble by optimizing bootstrap samples. A genetic algorithm is used to optimize bootstrap samples of the ensemble for improving prediction accuracy of the ensemble model. The proposed model is applied to a bankruptcy prediction problem using a real dataset from Korean companies. The experimental results showed the effectiveness of the proposed model.

Boosting the Performance of the Predictive Model on the Imbalanced Dataset Using SVM Based Bagging and Out-of-Distribution Detection (SVM 기반 Bagging과 OoD 탐색을 활용한 제조공정의 불균형 Dataset에 대한 예측모델의 성능향상)

  • Kim, Jong Hoon;Oh, Hayoung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.11
    • /
    • pp.455-464
    • /
    • 2022
  • There are two unique characteristics of the datasets from a manufacturing process. They are the severe class imbalance and lots of Out-of-Distribution samples. Some good strategies such as the oversampling over the minority class, and the down-sampling over the majority class, are well known to handle the class imbalance. In addition, SMOTE has been chosen to address the issue recently. But, Out-of-Distribution samples have been studied just with neural networks. It seems to be hardly shown that Out-of-Distribution detection is applied to the predictive model using conventional machine learning algorithms such as SVM, Random Forest and KNN. It is known that conventional machine learning algorithms are much better than neural networks in prediction performance, because neural networks are vulnerable to over-fitting and requires much bigger dataset than conventional machine learning algorithms does. So, we suggests a new approach to utilize Out-of-Distribution detection based on SVM algorithm. In addition to that, bagging technique will be adopted to improve the precision of the model.

Ensemble Classification Method for Efficient Medical Diagnostic (효율적인 의료진단을 위한 앙상블 분류 기법)

  • Jung, Yong-Gyu;Heo, Go-Eun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.97-102
    • /
    • 2010
  • The purpose of medical data mining for efficient algorithms and techniques throughout the various diseases is to increase the reliability of estimates to classify. Previous studies, an algorithm based on a single model, and even the existence of the model to better predict the classification accuracy of multi-model ensemble-based research techniques are being applied. In this paper, the higher the medical data to predict the reliability of the existing scope of the ensemble technique applied to the I-ENSEMBLE offers. Data for the diagnosis of hypothyroidism is the result of applying the experimental technique, a representative ensemble Bagging, Boosting, Stacking technique significantly improved accuracy compared to all existing, respectively. In addition, compared to traditional single-model techniques and ensemble techniques Multi modeling when applied to represent the effects were more pronounced.