• 제목/요약/키워드: bagging algorithm

검색결과 28건 처리시간 0.022초

Double-Bagging Ensemble Using WAVE

  • Kim, Ahhyoun;Kim, Minji;Kim, Hyunjoong
    • Communications for Statistical Applications and Methods
    • /
    • 제21권5호
    • /
    • pp.411-422
    • /
    • 2014
  • A classification ensemble method aggregates different classifiers obtained from training data to classify new data points. Voting algorithms are typical tools to summarize the outputs of each classifier in an ensemble. WAVE, proposed by Kim et al. (2011), is a new weight-adjusted voting algorithm for ensembles of classifiers with an optimal weight vector. In this study, when constructing an ensemble, we applied the WAVE algorithm on the double-bagging method (Hothorn and Lausen, 2003) to observe if any significant improvement can be achieved on performance. The results showed that double-bagging using WAVE algorithm performs better than other ensemble methods that employ plurality voting. In addition, double-bagging with WAVE algorithm is comparable with the random forest ensemble method when the ensemble size is large.

Extreme Learning Machine Ensemble Using Bagging for Facial Expression Recognition

  • Ghimire, Deepak;Lee, Joonwhoan
    • Journal of Information Processing Systems
    • /
    • 제10권3호
    • /
    • pp.443-458
    • /
    • 2014
  • An extreme learning machine (ELM) is a recently proposed learning algorithm for a single-layer feed forward neural network. In this paper we studied the ensemble of ELM by using a bagging algorithm for facial expression recognition (FER). Facial expression analysis is widely used in the behavior interpretation of emotions, for cognitive science, and social interactions. This paper presents a method for FER based on the histogram of orientation gradient (HOG) features using an ELM ensemble. First, the HOG features were extracted from the face image by dividing it into a number of small cells. A bagging algorithm was then used to construct many different bags of training data and each of them was trained by using separate ELMs. To recognize the expression of the input face image, HOG features were fed to each trained ELM and the results were combined by using a majority voting scheme. The ELM ensemble using bagging improves the generalized capability of the network significantly. The two available datasets (JAFFE and CK+) of facial expressions were used to evaluate the performance of the proposed classification system. Even the performance of individual ELM was smaller and the ELM ensemble using a bagging algorithm improved the recognition performance significantly.

유전자 알고리즘 기반 통합 앙상블 모형 (Genetic Algorithm based Hybrid Ensemble Model)

  • 민성환
    • Journal of Information Technology Applications and Management
    • /
    • 제23권1호
    • /
    • pp.45-59
    • /
    • 2016
  • An ensemble classifier is a method that combines output of multiple classifiers. It has been widely accepted that ensemble classifiers can improve the prediction accuracy. Recently, ensemble techniques have been successfully applied to the bankruptcy prediction. Bagging and random subspace are the most popular ensemble techniques. Bagging and random subspace have proved to be very effective in improving the generalization ability respectively. However, there are few studies which have focused on the integration of bagging and random subspace. In this study, we proposed a new hybrid ensemble model to integrate bagging and random subspace method using genetic algorithm for improving the performance of the model. The proposed model is applied to the bankruptcy prediction for Korean companies and compared with other models in this study. The experimental results showed that the proposed model performs better than the other models such as the single classifier, the original ensemble model and the simple hybrid model.

다구찌 디자인을 이용한 앙상블 및 군집분석 분류 성능 비교 (Comparing Classification Accuracy of Ensemble and Clustering Algorithms Based on Taguchi Design)

  • 신형원;손소영
    • 대한산업공학회지
    • /
    • 제27권1호
    • /
    • pp.47-53
    • /
    • 2001
  • In this paper, we compare the classification performances of both ensemble and clustering algorithms (Data Bagging, Variable Selection Bagging, Parameter Combining, Clustering) to logistic regression in consideration of various characteristics of input data. Four factors used to simulate the logistic model are (1) correlation among input variables (2) variance of observation (3) training data size and (4) input-output function. In view of the unknown relationship between input and output function, we use a Taguchi design to improve the practicality of our study results by letting it as a noise factor. Experimental study results indicate the following: When the level of the variance is medium, Bagging & Parameter Combining performs worse than Logistic Regression, Variable Selection Bagging and Clustering. However, classification performances of Logistic Regression, Variable Selection Bagging, Bagging and Clustering are not significantly different when the variance of input data is either small or large. When there is strong correlation in input variables, Variable Selection Bagging outperforms both Logistic Regression and Parameter combining. In general, Parameter Combining algorithm appears to be the worst at our disappointment.

  • PDF

데이터 마이닝에서 배깅, 부스팅, SVM 분류 알고리즘 비교 분석 (An Empirical Comparison of Bagging, Boosting and Support Vector Machine Classifiers in Data Mining)

  • 이영섭;오현정;김미경
    • 응용통계연구
    • /
    • 제18권2호
    • /
    • pp.343-354
    • /
    • 2005
  • 데이터 마이닝에서 데이터를 효율적으로 분류하고자 할 때 많이 사용하고 있는 알고리즘을 실제 자료에 적용시켜 분류성능을 비교하였다. 분류자 생성기법으로는 의사결정나무기법 중의 하나인 CART, 배깅과 부스팅 알고리즘을 CART 모형에 결합한 분류자, 그리고 SVM 분류자를 비교하였다. CART는 결과 해석이 쉬운 장점을 가지고 있지만 데이터에 따라 생성된 분류자가 다양하여 불안정하다는 단점을 가지고 있다. 따라서 이러한 CART의 단점을 보완한 배깅 또는 부스팅 알고리즘과의 결합을 통해 분류자를 생성하고 그 성능에 대해 평가하였다. 또한 최근 들어 분류성능을 인정받고 있는 SVM의 분류성능과도 비교?평가하였다. 각 기법에 의한 분류 결과를 가지고 의사결정나무를 형성하여 자료가 가지는 데이터의 특성에 따른 분류 성능을 알아보았다. 그 결과 데이터의 결측치가 없고 관측값의 수가 적은 경우는 SVM의 분류성능이 뛰어남을 알 수 있었고, 관측값의 수가 많을 때에는 부스팅 알고리즘의 분류성능이 뛰어났으며, 데이터의 결측치가 존재하는 경우는 배깅의 분류성능이 뛰어남을 알 수 있었다.

Anomaly-Based Network Intrusion Detection: An Approach Using Ensemble-Based Machine Learning Algorithm

  • Kashif Gul Chachar;Syed Nadeem Ahsan
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.107-118
    • /
    • 2024
  • With the seamless growth of the technology, network usage requirements are expanding day by day. The majority of electronic devices are capable of communication, which strongly requires a secure and reliable network. Network-based intrusion detection systems (NIDS) is a new method for preventing and alerting computers and networks from attacks. Machine Learning is an emerging field that provides a variety of ways to implement effective network intrusion detection systems (NIDS). Bagging and Boosting are two ensemble ML techniques, renowned for better performance in the learning and classification process. In this paper, the study provides a detailed literature review of the past work done and proposed a novel ensemble approach to develop a NIDS system based on the voting method using bagging and boosting ensemble techniques. The test results demonstrate that the ensemble of bagging and boosting through voting exhibits the highest classification accuracy of 99.98% and a minimum false positive rate (FPR) on both datasets. Although the model building time is average which can be a tradeoff by processor speed.

시계열 예측의 변형된 ENSEMBLE ALGORITHM (Time Series Forecasting Based on Modified Ensemble Algorithm)

  • 김연형;김재훈
    • 응용통계연구
    • /
    • 제18권1호
    • /
    • pp.137-146
    • /
    • 2005
  • 신경망은 전통적인 시계열 기법들에 비해 대체적으로 예측성능의 우수함이 입증되었으나 계절성과 추세성을 갖는 시계열자료에 대해 예측력이 떨어지는 단점을 가지고 있다. 최근에는 Ensemble 기법인 Bagging Algorithm과 신경망의 혼합모형인 Bagging Neural Network이 개밭되었다. 이 기법은 분산과 편향을 많이 줄여줌으로써 더 좋은 예측을 할 수 있는 것으로 나타났다. 그러나 Ensemble 기법을 이용한 예측모형은 시계열자료를 적합 시키는데 있어 초기부여확률 및 예측자 선정시의 문제점을 가지고 있다. 이에 본 연구에서는 이러한 문제점을 해결하고 더불어 예측력을 향상시키기 위한 방법으로 초기부여확률이 균일분포가 아닌 순차적인 형태의 분포를 제시하고 신경망을 예측자로 활용한 변형된 Ensemble Algorithm을 제안한다. 또한 예측모형의 평가를 위해 실제자료를 가지고 기존 예측모형들과 제안한 방법을 이용하여 예측하고 각 MSE의 비교를 통하여 예측정확도를 알아보고자 한다.

부트스트랩 샘플링 최적화를 통한 앙상블 모형의 성능 개선 (Improving an Ensemble Model by Optimizing Bootstrap Sampling)

  • 민성환
    • 인터넷정보학회논문지
    • /
    • 제17권2호
    • /
    • pp.49-57
    • /
    • 2016
  • 앙상블 학습 기법은 개별 모형보다 더 좋은 예측 성과를 얻기 위해 다수의 분류기를 결합하는 것으로 예측 성과를 향상시키는데에 매우 유용한 것으로 알려져 있다. 배깅은 단일 분류기의 예측 성과를 향상시키는 대표적인 앙상블 기법중의 하나이다. 배깅은 원 학습 데이터로부터 부트스트랩 샘플링 방법을 통해 서로 다른 학습 데이터를 추출하고, 각각의 부트스트랩 샘플에 대해 학습 알고리즘을 적용하여 서로 다른 다수의 기저 분류기들을 생성시키게 되며, 최종적으로 서로 다른 분류기로부터 나온 결과를 결합하게 된다. 배깅에서 부트스트랩 샘플은 원 학습 데이터로부터 램덤하게 추출한 샘플로 각각의 부트스트랩 샘플이 동일한 정보를 가지고 있지는 않으며 이로 인해 배깅 모형의 성과는 편차가 발생하게 된다. 본 논문에서는 이와 같은 부트스트랩 샘플을 최적화함으로써 표준 배깅 앙상블의 성과를 개선시키는 새로운 방법을 제안하였다. 제안한 모형에서는 앙상블 모형의 성과를 개선시키기 위해 부트스트랩 샘플링을 최적화하였으며 이를 위해 유전자 알고리즘이 활용되었다. 본 논문에서는 제안한 모형을 국내 부도 예측 문제에 적용해 보았으며, 실험 결과 제안한 모형이 우수한 성과를 보였다.

SVM 기반 Bagging과 OoD 탐색을 활용한 제조공정의 불균형 Dataset에 대한 예측모델의 성능향상 (Boosting the Performance of the Predictive Model on the Imbalanced Dataset Using SVM Based Bagging and Out-of-Distribution Detection)

  • 김종훈;오하영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권11호
    • /
    • pp.455-464
    • /
    • 2022
  • 제조업의 공정에서 생성되는 데이터셋은 크게 두 가지 특징을 가진다. 타겟 클래스의 심각한 불균형과 지속적인 Out-of-Distribution(OoD) 샘플의 발생이다. 클래스 불균형은 SMOTE 및 다양한 샘플링 전략을 통해서 대응할 수 있다. 그러나, OoD 탐색은 현재까지 인공신경망 영역에서만 다뤄져 왔다. OoD 탐색의 적용이 가능한 인공신경망은 제조공정 데이터셋에 대해서 만족스러운 성능을 발현하지 못한다. 원인은 제조공정의 데이터셋이 인공신경망에서 일반적으로 다루는 이미지, 텍스트 데이터셋과 비교해서 크기가 매우 작고, 노이즈가 심하다는 것이다. 또한 인공신경망의 과적합(overfitting) 문제도 제조업 데이터셋에서 인공신경망의 성능을 저하하는 원인으로 지적된다. 이에 현재까지 시도된 바 없는 SVM 알고리즘과 OoD 탐색의 접목을 시도하였다. 또한 예측모델의 정밀도 향상을 위해 배깅(Bagging) 알고리즘을 모델링에 반영하였다.

효율적인 의료진단을 위한 앙상블 분류 기법 (Ensemble Classification Method for Efficient Medical Diagnostic)

  • 정용규;허고은
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권3호
    • /
    • pp.97-102
    • /
    • 2010
  • 의료 데이터 마이닝의 목적은 효율적인 알고리즘 및 기법을 통하여 각종 질병을 예측 분류하고 신뢰도를 높이는데 있다. 기존의 연구로 단일모델을 기반으로 하는 알고리즘이 존재하며 나아가 모델의 더 좋은 예측과 분류 정확도를 위하여 다중모델을 기반으로 하는 앙상블 기법을 적용한 연구도 진행되고 있다. 본 논문에서는 의료데이터의 보다 높은 예측의 신뢰도를 위하여 기존의 앙상블 기법에 사분위간 범위를 적용한 I-ENSEMBLE을 제안한다. 갑상선 기능 저하증 진단을 위한 데이터를 통해 실험 적용한 결과 앙상블의 대표적인 기법인 Bagging, Boosting, Stacking기법 모두 기존에 비해 현저하게 향상된 정확도를 나타내었다. 또한 기존 단일모델 기법과 비교하여 다중모델인 앙상블 기법에 사분위간 범위를 적용했을 때 더 뚜렷한 효과를 나타냄을 확인하였다.