• Title/Summary/Keyword: bag of keypoints

Search Result 4, Processing Time 0.018 seconds

Visual Location Recognition Using Time-Series Streetview Database (시계열 스트리트뷰 데이터베이스를 이용한 시각적 위치 인식 알고리즘)

  • Park, Chun-Su;Choeh, Joon-Yeon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.57-61
    • /
    • 2019
  • Nowadays, portable digital cameras such as smart phone cameras are being popularly used for entertainment and visual information recording. Given a database of geo-tagged images, a visual location recognition system can determine the place depicted in a query photo. One of the most common visual location recognition approaches is the bag-of-words method where local image features are clustered into visual words. In this paper, we propose a new bag-of-words-based visual location recognition algorithm using time-series streetview database. The proposed algorithm selects only a small subset of image features which will be used in image retrieval process. By reducing the number of features to be used, the proposed algorithm can reduce the memory requirement of the image database and accelerate the retrieval process.

An Approach for Localization Around Indoor Corridors Based on Visual Attention Model (시각주의 모델을 적용한 실내 복도에서의 위치인식 기법)

  • Yoon, Kook-Yeol;Choi, Sun-Wook;Lee, Chong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.93-101
    • /
    • 2011
  • For mobile robot, recognizing its current location is very important to navigate autonomously. Especially, loop closing detection that robot recognize location where it has visited before is a kernel problem to solve localization. A considerable amount of research has been conducted on loop closing detection and localization based on appearance because vision sensor has an advantage in terms of costs and various approaching methods to solve this problem. In case of scenes that consist of repeated structures like in corridors, perceptual aliasing in which, the two different locations are recognized as the same, occurs frequently. In this paper, we propose an improved method to recognize location in the scenes which have similar structures. We extracted salient regions from images using visual attention model and calculated weights using distinctive features in the salient region. It makes possible to emphasize unique features in the scene to classify similar-looking locations. In the results of corridor recognition experiments, proposed method showed improved recognition performance. It shows 78.2% in the accuracy of single floor corridor recognition and 71.5% for multi floor corridors recognition.

Real-Time Place Recognition for Augmented Mobile Information Systems (이동형 정보 증강 시스템을 위한 실시간 장소 인식)

  • Oh, Su-Jin;Nam, Yang-Hee
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.477-481
    • /
    • 2008
  • Place recognition is necessary for a mobile user to be provided with place-dependent information. This paper proposes real-time video based place recognition system that identifies users' current place while moving in the building. As for the feature extraction of a scene, there have been existing methods based on global feature analysis that has drawback of sensitive-ness for the case of partial occlusion and noises. There have also been local feature based methods that usually attempted object recognition which seemed hard to be applied in real-time system because of high computational cost. On the other hand, researches using statistical methods such as HMM(hidden Markov models) or bayesian networks have been used to derive place recognition result from the feature data. The former is, however, not practical because it requires huge amounts of efforts to gather the training data while the latter usually depends on object recognition only. This paper proposes a combined approach of global and local feature analysis for feature extraction to complement both approaches' drawbacks. The proposed method is applied to a mobile information system and shows real-time performance with competitive recognition result.

Comparison of Match Candidate Pair Constitution Methods for UAV Images Without Orientation Parameters (표정요소 없는 다중 UAV영상의 대응점 추출 후보군 구성방법 비교)

  • Jung, Jongwon;Kim, Taejung;Kim, Jaein;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.647-656
    • /
    • 2016
  • Growth of UAV technology leads to expansion of UAV image applications. Many UAV image-based applications use a method called incremental bundle adjustment. However, incremental bundle adjustment produces large computation overhead because it attempts feature matching from all image pairs. For efficient feature matching process we have to confine matching only for overlapping pairs using exterior orientation parameters. When exterior orientation parameters are not available, we cannot determine overlapping pairs. We need another methods for feature matching candidate constitution. In this paper we compare matching candidate constitution methods without exterior orientation parameters, including partial feature matching, Bag-of-keypoints, image intensity method. We use the overlapping pair determination method based on exterior orientation parameter as reference. Experiment results showed the partial feature matching method in the one with best efficiency.