• Title/Summary/Keyword: baffles

Search Result 185, Processing Time 0.028 seconds

Improvement of Sedimentation Rate in the Settling Basin by Labyrinth Weir (래버린스 위어를 이용한 침사지 내 침전효율 개선)

  • Cho, Hun Sik;Yeo, Chang Geon;Im, Janghyuk;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3B
    • /
    • pp.153-159
    • /
    • 2012
  • In this study, we proposed modified settling basins transformed by substituting the downstream sill for low head weirs such as generic labyrinth weir and inclined crest labyrinth weir worked as internal baffles. Laboratory experiments were carried out to understand hydraulic characteristics inside of the settling basin to improve the efficiency of sedimentation rate. For a quantitative analysis, we suggested the headwater ratio($H_t/P$), the magnification ratio(L/W) and the inflow rate per total crest length($q_L$) as primary analysis indexes for sedimentation efficiency. Six different types of settling basin were used for labscaled pilot tests by distinguishing with internal structures. Based on results, the variation of headwater ratio with the change of magnification ratio would highly affect the deposition efficiency(%) and it was improved under specific condition that repeating arrange number(N) of labyrinth weir was between 2 and 4. Also, the regression analysis showed that initial condition and shape for improving sedimentation efficiency were plotted on the graph for both $q_L{\geq}3.5cm^2/s$ and $L/W{\leq}3.5$. It would be expected that the geometrically optimized labyrinth settling basin could be designed with proper deposition efficiency for inflow rates of influent and required area of settling basin utilizing the proposed analysis index in this study.

CO2 Mineral Carbonation Reactor Analysis using Computational Fluid Dynamics: Internal Reactor Design Study for the Efficient Mixing of Solid Reactants in the Solution (전산유체역학을 이용한 이산화탄소 광물 탄산화 반응기 분석: 용액 내 고체 반응물 교반 향상을 위한 내부 구조 설계)

  • Park, Seongeon;Na, Jonggeol;Kim, Minjun;An, Jinjoo;Lee, Chaehee;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.612-620
    • /
    • 2016
  • Aqueous mineral carbonation process, in which $CO_2$ is captured through the reaction with aqueous calcium oxide (CaO) solution, is one of CCU technology enabling the stable sequestration of $CO_2$ as well as economic value creation from its products. In order to enhance the carbon capture efficiency, it is required to maximize the dissolution rate of solid reactants, CaO. For this purpose, the proper design of a reactor, which can achieve the uniform distribution of solid reactants throughout the whole reactor, is essential. In this paper, the effect of internal reactor designs on the solid dispersion quality is studied by using CFD (computational fluid dynamics) techniques for the pilot-scale reactor which can handle 40 ton of $CO_2$ per day. Various combination cases consisting of different internal design variables, such as types, numbers, diameters, clearances and speed of impellers and length and width of baffles are analyzed for the stirred tank reactor with a fixed tank geometry. By conducting sensitivity analysis, we could distinguish critical variables and their impacts on solid distribution. At the same time, the reactor design which can produce solid distribution profile with a standard deviation value of 0.001 is proposed.

The effects of solenoid magnet on plasma extraction in Filtered Vacuum Arc Source (FVAS) (자장여과 아크 소스에서 각 전자석이 플라즈마 인출에 미치는 영향)

  • 김종국;변응선;이구현;조영상
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.4
    • /
    • pp.431-439
    • /
    • 2001
  • In this paper, the a-Diamond films were synthesized using filtered vacuum arc source (FVAS), FVAS was composed of a torus structure with bending angle of 60 degree. The radius of torus was 266 mm, the radius of plasma duct was 80 mm and the total length was 600 mm. The magnet parts were composed of one permanent magnet and five solenoid magnets. The plasma duct was electrically isolated from the ground so that a bias voltage could be applied. The baffles inside plasma duct were installed in order to prevent the recoil effect of macro-particles. Cathode was made of graphite with 80 mm in diameter. The effects of solenoid magnet on plasma extraction were investigated by computer simulation and experiment using Taguchi's methode. The source and extraction magnet affected the arc stabilization. The extraction beam current was maximized with low value of the source magnet current and high value of the filtering magnet current. The beam current density was 3.2 mA/$\textrm{cm}^2$ and average deposition rate was 5 $\AA$/sec when the currents of arc discharge, source, extraction, bending, deflection and outlet magnet were 30 A, 1 A, 3 A, 5 A, 5 A, and 5 A, respectively. The beam current density and the efficiency of beam transportation were increased with the positive bias voltage of the plasma duct.

  • PDF

Photocatalytic Oxidation of Han River Humic Substances and Change of Their Characteristics by $TiO_2/UV$ in a Rotating Photoreactor ($TiO_2/UV$ 회전반응기를 이용한 한강 휴믹물질의 광촉매산화 처리 및 특성 변화)

  • Shin, Jee-Won;Kim, Hyun-Chul;Han, Ihn-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1129-1135
    • /
    • 2005
  • In this study. the applicability of a rotating reactor for the oxidative removal of aqueous humic substances extracted from the Han River in Seoul, Korea was investigated. As air blowing for proper mixing of $TiO_2$ photocatalyst could inhibit UV-irradiation between a UV lamp and photocatalyst by air bubbles, a rotating reactor with some baffles was used for better UV-irradiation effect in this study. Han River humic substances are different from the other commercial humic substances(e.g., from Aldrich and International Humic Substance Society). Their characteristics were investigated with structural and spectroscopic analyses using FT-IR(Fourier transform-infrared), and $^{13}C$-NMR (nuclear magnetic resonance). The humic substances were extracted by XAD-7HP and treated with $TiO_2$-coated hollow beads under UV-A and UV-C irradiation in order to solve problems of separation and recovery of photocatalyst after reaction. At approximately 5 mg/L of initial TOC concentration, pH 3 and $2.0\;g-TiO_2/L$ dose, photocatalytic oxidation of Han River humic substances showed the optimum removal efficiency. Also, UV-C and UV-A lamps showed similar TOC removal efficiency. However, under UV-C irradiation, Han River humic substances were degraded to smaller compounds and increased the proportion of low molecular weight fractions compared to UV-A.

Assessment of Hydraulic Behavior and Water Quality Variation Characteristics in Underground Reservoir (지하저수조의 수리적 거동과 수질변화 특성 평가)

  • Lee, H.D.;Bae, C.H.;Kim, J.H.;Hwang, J.W.;Hong, S.H.
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.52-58
    • /
    • 2005
  • The assessment on characteristics of hydraulic behavior and water quality variations of underground reservoirs of buildings were studied. Firstly, it was thought that underground reservoir capacities($m^3$) of buildings should be not determinated by the uniform and same methods but be estimated on the basis of the dwelling areas on dominated households and their residential characteristics, because these characteristics influence significantly on actual water usages and patterns of buildings. Secondly, it was likely that the average reduction rate of residual chlorine in underground reservoirs were affected from the their capacities, because the average reduction rate of residual chlorine in underground reservoirs under $1,000m^3$ was 43 percent, on the other hand, that rate of underground reservoirs over $1,000m^3$ was 60 percent. Thirdly, through the field investigation, the retention time of drinking water in underground reservoirs were in the range from 0.3 day to 3.9 day. In addition to, the average reduction rate of residual chlorine were depended largely on the retention time of drinking water. When the retention time was under 24 hours, the average reduction rate of residual chlorine was 45 percent, and in case of over 24 hours, was 49 percent. Fourth, water level in underground reservoirs was averagely varied in the range from 0.1 m to 2.65 m at the height of underground reservoirs. If considered actual height of underground reservoirs, 37.6 percent of the height of underground reservoirs was only used. Consequently, the frequency of the inflow and outflow of drinking water in underground reservoir were very increased, and had an effect on the reduction of residual chlorine. Lastly, the investigations on hydraulic structure characteristics of underground reservoirs inside showed the locations of inflow and outflow of drinking water almost were in the opposite direction. And some buildings had several baffles in the middle. Nevertheless, their installations had no beneficial for the improvement of water quality.

Conditions for Rapid Processing of Modified Fish Sauce using Enzymatic Hydrolysis and Improvement of Product Quality 1. Fish Sauce from Mackerel Waste and Its Quality (효소분해법에 의한 개량어장유의 속성제조 및 품질에 관한 연구 1. 고등어 폐기물을 이용한 어장유의 속성제조 및 품질)

  • HAN Bong-Ho;BAE Tae-Jin;CHO Hyun-Duk;KIM Jong-Chul;KIM Byeong-Sam;CHOI Soo-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.2
    • /
    • pp.109-124
    • /
    • 1990
  • A rapid processing method for fish sauce of high quality stability and favorable flavor was investigated using mackerel waste as starting material. The chopped waste was homogenized with water and hydrolyzed by commercial proteolytic enzymes such as Complex enzyme-2000($2.18\cdot10^4$ U/g solid, Pacific Chem. Co.) and Alcalase ($1.94\cdot10^4$ U/g solid, Novo) in a cylindrical vessel with 4 baffles and 6-bladed turbine impeller. Optimal pH and temperature for the hydrolysis with Complex enzyme-2000 were 8.0 and $50^{\circ}C$, and those with Alcalase were 9.0 and $55^{\circ}C$. In both cases, the reasonabe amount of added water and enzyme concentration based on the waste weight were $40\%,\;3\%$ and hydrolyzing time was 100 min. Thermal treatment of the hydrolysate with $6\%$ of invert sugar for 2 hours at $90^{\circ}C$ was adequated to inactivation of the enzymes and pasteurization of the hydrolysate. Flavor, taste and color of the hydrolysate were improved during the thermal treatment in which the browning reaction products might participate and result in antioxidative and bactericidal effects. Combined use of $0.005\%$ of Caryophylli flos with $6\%$ of invert sugar was also effective for the improvement of taste. Yield of the fish sauce based on the total nitrogen of the raw waste was $93.7\~94.9\%$, and $87.6\~87.9\%$ of the total nitrogen in the fish sauce was in the from of amino nitrogen. The pH, salinity and histamine content of the fish sauce prepared with $15\%$ of table salt were $6.1\~6.2$, $14.0\~14.5\%$ and less than $10mg\%$, respectively. The fish sauce was stable on bacterial growth during the storage of 60 days at $26\pm3^{\circ}C$ and the quality was also maintained.

  • PDF

Conditions for Rapid Processing of Modified Fish Sauce using Enzymatic Hydrolysis and Improvement of Product Quality 2. Fish Sauce from Sardine Waste and Its Quality (효소분해법에 의한 개량어장유의 속성제조 및 품질에 관한 연구 2. 정어리 폐기물을 이용한 어장유의 속성제조 및 품질)

  • BAE Tae-Jin;HAN Bong-Ho;CHO Hyun-Duk;KIM Jong-Chul;KIM Byeong-Sam;CHOI Soo-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.2
    • /
    • pp.125-136
    • /
    • 1990
  • To develope a rapid processing method for fish sauce, processing conditions of fish sauce from sardine waste was investigated. The chopped waste was homogenized and hydrolyzed by commercial proteolytic enzymes such as Complex enzyme-2000($2.18\cdot10^4$ U/g solid) and Alcalase($1.94\cdot10^4$ U/g solid) in a cylindrical vessel with 4 baffles and 6-bladed turbine impeller. Optimal temperature for the case of hydrolysis with Complex enzyme-2000 was 50 and that with Alcalase was $55^{\circ}C$. In both cases, the reasonable pH, amount of water for homo-genization, enzyme concentration and hydrolyzing time were 8.0, $40\%$ (W/W), $3\%$ and 100 min, respectively. Heating of the filtrated hydrolysate for 2 hours at $90^{\circ}C$ with $6\%$ of invert sugar was suitable for pasteurization of the hydrolysate and inactivation of enzymes. Flavor, taste and color of the hydrolysate was improved during the thermal treatment in which the browning reaction products might participate and result in antioxidative and bactericidal effects. Combined use of $0.005\%$ of Caryophylli flos with invert sugar was also effective for the improvement of taste. Yield of the fish sauce based on the total nitrogen in the raw sardine waste was $91.2\~92.3\%$ and $87.2\~87.8\%$ of the total nitrogen in the fish sauce was in the form of amino nitrogen. The pH, salinity and histamine content of the fish sauce prepared with $15\%$ of table salt were $6.1\~6.2$, $14.2\~14.4\%$ and less than $10mg\%$, respectively. The fish sauce was stable during the storage of 60 days at $26\pm3^{\circ}C$ on bacterial growth and its quality was also maintained.

  • PDF

Numerical Study for Flow Uniformity in Selective Catalytic Reduction(SCR) Process (SCR 공정에서 반응기 내부의 유동 균일화를 위한 수치적 연구)

  • Jung, Yu-Jin;Hong, Sung-Gil;Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4666-4672
    • /
    • 2011
  • Performance of NOx removal in SCR(Selective Catalytic Reduction) process depends on such various factors as catalyst factors (catalyst composition, catalyst form, space velocity, etc.), temperature of exhaust gas, and velocity distribution of exhaust gas. Especially the flow uniformity of gas stream flowing into the catalyst layer is believed to be the most important factor to influence the performance. In this research, the flow characteristics of a SCR process at design stage was simulated, using 3-dimensional numerical analysis method, to confirm the uniformity of the gas stream. In addition, the effects of guide vanes, baffles, and perforated plates on the flow uniformity for the inside and catalyst layer of the reactor were studied in order to optimize the flow uniformity inside the SCR reactor. It was found that the installation of a guide vane at the inlet duct L-tube part and the installation of a baffle at the upper part is very effective in avoiding chaneling inside the reactor. It was also found that additional installation of a perforated plate at the lower part of the potential catalyst layer buffers once more the flow for very uniform distribution of the gas stream.

Development of a New Clay Roof Tiles for the Reduction of Weight in Korean-Style Roof (한옥지붕 경량화를 위한 신형 한식기와 개발)

  • Park, Jin Cheol;Chung, Chan Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.765-771
    • /
    • 2019
  • New Korean-style clay roof tiles have been developed with a focus on significantly reducing the roof's weight while maintaining the strength, absorption rate, and freeze durability. The backflow of rain water through the gaps between roof tiles is prevented by employing baffles and a groove to accelerate water flow. With the new roof tiles, dry construction of a roof is possible without requiring soil. By using the dry construction method with the new roof tiles, a reduction in roof weight of more than 80% is possible compared to the conventional wet construction method with soil. In the case of a traditional Korean-style house with a building area of 99 square meters, the roof weight can be reduced from 135 tons to 24 tons. The new tiles satisfy the KS requirements and are more than 30% lighter than traditional roof tiles. A roof constructed using the new tiles showed no water leaks when exposed to typhoon-class winds with speeds of 17 m/s and 200 mm/h of rainfall, which is 60% higher than the Korea rainfall record. The new roof tiles also have advantages of economic efficiency, workability, maintenance, and aseismicity compared to previous Korean-style roof tiles.

Indepth Study of Numerical Heat Transfer and Fluid Flow for Energy Saving of Greenhouse (시설하우스 에너지 절감을 위한 열유동 수치 해석 심층 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Choi, Jun-Ho;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.466-471
    • /
    • 2007
  • The purpose of study is to obtain basic but important information for the operation of the greenhouse facility located in the suburb of town. Special emphasis is given on the aspect of energy saving method, which can be easilyapplicable in a practical sense. For this end numerical calculation has been made systematically in order to increase the energy efficiency by the evaluation of the temperature distribution in greenhouse. Major parameters considered are primarily the overall shape of greenhouse together with the various conditions of baffle installion inside greenhouse. Further, the performance of heating system is also carefully compared each other for a number of typical arrangements of heating duct. The performance of the computer program developed in this study is evaluated by the observation of the famous fluid trapping phenomenon occurred in staggered baffle condition in the enclosure of greenhouse. Based on the this study, a number of useful conclusions can be drawn, that is, the installation of baffles are quite effective in energy saving method with a minor modification of facility. Also, it is found that the change of the heating duct system can contribute significantly to the uniform temperature distribution in greenhouse. Further other findings obtained by numerical calculation were not only physically consistent and meaningful but also useful for the determination of optimum condition of practical operation of greenhouse.